
Extend your back-end integrations securely to partners and
developers.
Extending access via APIs to your back-end integrations empower
your partners and developer community to create new business value,
technical value, and customer experiences for your products and
offerings. Spur innovations where a number of technologies are
combined to create something new, for example, extending the ability
apply for loan pre-approvals that can be used within apps that search
for cars or real estate. To do this, you must first create the back-end
integrations, which combine data from existing core systems,
disparate assets, or SaaS services with the ability to send critical data
between systems reliably. Second, you need to provide APIs to your
back-end integrations that secure access and apply rate limits.
In this tutorial, you learn how to deploy an app integration flow that
takes data from one source and sends it to a message queue for
reliable delivery. Then, you expose this integration as a rate-limited
API secured by a key and secret. This integration flow is
deployed quickly and easily as an independent, auto-scalable
microservice running on containers. By using RedHat OpenShift as a
foundation.
In this tutorial, you will explore the following key capabilities:

• Explore multiple integration capabilities within a single platform.
• Create a queue using MQ Console
• Create an integration flow between a public cloud service and on-prem

message queue.
• Deploy the integration flow as a microservice using Helm.
• Provide access to the integration flow as a secure API.
• Explore Operations Dashboard for APIC, IBM MQ and App Connect

Enterprise.
Task 1 - Start the Environment
As this is a new deployment of the Cloud Pak for Integration, you must
execute some steps to prepare the environment. Initial setup steps

are only needed for a fresh installation of the platform. They do not
need to be repeated.
All work for this lab is done on the Developer Machine. Open
the developer Machine VM by clicking the tile.

1. If the environment is already up and running when you open your
reservation link, skip to step 3. If it is not running, continue to step 2.

2. Click the Run VM(s) button as shown below to start the virtual machine
environment that is used for this lab.

3. Once the virtual machine has started, click the desktop Machine tile to
start your lab exercise.

4. Log in as user ibmuser, password engageibm
Task 2 - Configure Message Queue (MQ) to Authorize and Accept Data.
As this is a brand-new deployment of the Cloud Pak for Integration, all
instances of integrations, message queues, and event streams are
deployed as microservices. We need to authorize the Message Queue
service to accept incoming data from the integration running on a
separate server.

Cloud Pak for Integration provides a single solution for all of your
enterprise integration needs. The platform provides a comprehensive
set of industry-leading capabilities. Use any of them on their own or
together through a single interface. Create, manage, and monitor all of
your integrations across SaaS applications, messaging, streams, APIs,
high-speed transfer, and more.
Unlock the power of your data and support the scale required for all of
your integration and digital transformation initiatives.

1. Click the IBM Cloud Pak for Integration bookmark in the bookmarks bar
at the top.

2. The login screen for IBM Cloud Pak might be displayed, you don't need to
enter username: admin and Password: passw0rd. Click log in.

3. After logging in, the Cloud Pak for Integration home page is loaded. From
here you are able to navigate to all the integration and development
technology contained within the platform. Today, this technology
includes: API Connect, App Connect integration, Aspera, DataPower,
Event Streams, MQ, Tracing and Asset Repo . Click the View Instances
link.

Task 3 - Creating a queue in MQ
This task covers administering and creating a new queue in MQ. MQ
for Cloud Pak for Integration has a Web GUI, which the Integration
Developer, with security authorization, will be able to manage the
different MQ objects (queues, channels, topics and so on)

1. Click in View Instances and then menu, mq-1, instance to open MQ
console.

You might receive a warning message. Click Advance.

Click Accept the Risk and Continue in the Firefox browser. Click
the Proceed (unsafe) link in the Chrome browser.

2. You see the MQ Console and MQ server running as mq. You can add more
widgets for more information on MQ objects, click Add Widget button.

3. In the window, you can select the Queues widget.

4. You see the queues window.You see queue names, type and queue
depth. Click Create (+) to create a queue.

5. Enter the queue name: ORDERS (this is case-sensitive). Here you are
able to create Local, Remote, Alias and Model queue. In our lab
check Local.

6. Look at Queues on mq window and check the queue created (Local and
Queue depth).

7. You need additional information about the MQ connection, click the
“Hamburger” menu and then select Cloud Pak Foundation .
Note: You can navigate using the Hamburger Menu or View Instances in
the Cloud Pak Navigator page

8. Open “Hambuger” menu again and select Administer->Helm
Repositories) .

9. On the Helm Releases page, type mq in the search box. The search finds
mq helm releases. Click the line of mq-1.

10. Scroll down to the bottom of the page and check the MQ
connection. You see the host address: mq-1-ibm-mq.mq.svc and the
port 1414. App Connect Enterprise will use a mq connection client
for mq-1 .

Task 4 - Configuring the app integration flow
This task covers opening and examining an application integration flow
in the IBM App Connect Enterprise Toolkit. With the Toolkit you can
build powerful and complex integration applications, services, and

APIs quickly and easily using a visual designer. Your integration
solutions can be directly deployed to the Cloud Pak for Integration on
IBM Cloud Pak running on-premise, in any cloud, or combinations of
both.

1. In the desktop click the right mouse to open a terminal window.

2. In the terminal window, type ace toolkit to open the App Connect
Enterprise Toolkit.

3. In the Workspace Launcher window, choose the workspace
/home/student/IBM/ACET11/workspace/ace-apic.Verify the path routes
to the folder: ace-apic. Click OK.

4. The toolkit opens the project. To view the integration flow that you
deploy, click orders -> Resources -> Subflows -> getOrder.subflow

5. Check the MQ node by clicking the MQ Output
Node. Click Properties and select Basic, If necessary type the queue
name (you created in MQ Task) ORDERS .

6. You have configured the queue name. You need to configure how the App
Connect Enterprise server connects to the MQ server. Click MQ
Connection.

Obs: All parameters are case-sensitive.

1. Select the MQ connection tab. App Connect Enterprise uses a mq client
connection. Select MQ client connection properties

2. Type Destination queue manager name: mq
3. Type Queue manager host name: mq-1-ibm-mq.mq.svc
4. Type port number: 1414
5. Type Channel name: SYSTEM.DEF.SVRCONN
6. If necessary Save the flow.

7. In the Application Development view on the left, on orders flow, right-
click and then select New -> BAR file.

8. Type the name of BAR file: orders and click Finish. App Connect
Enterprise is creating an empty BAR file

|

9. You need to configure which artifacts are compiled in the BAR file.
Check orders and check Compile and in-line resources, then click
the Build and Save button. A pop-up window displays “Operation
completed successfully.” Click OK.

Task 5 - Deploy Integration BAR file as containers.
In this task, you deploy a BAR file in App Connect Enterprise
Dashboard.

1. Click the bookmark bar Cloud Pak Platform Navigator in the browser.
Click Skip Welcome , Open View instances

2. Click ace-1 link to open App Connect Enterprise Dashboard.

3. In the App Connect Enterprise Dashboard, you see the Integration Server
deployed. To deploy the orders.bar file you saved and complied above
click Create server.

4. Click the box Add a BAR file.

5. In the File Upload window. Open
/home/ibmuser/IBM/ACET11/workspace/ace-apic/BARfiles andselect

the file orders.bar and click Open. Verify the path routes to the ace-
apic folder.

6. You see that orders.bar has uploaded to be deployed. Click Continue.

7. You don’t need to download configuration package (Configuration
package contains the files that you can use for App Connect Enterprise
works with Databases, Event Streams, etc) click Next .

8. In the Create an integration server page. You have two option to deploy a
BAR file. Deploy a BAR file from App Connect Toolkit or a BAR file
from App Connect Designer. In this lab you deploy BAR file from App
Connect Toolkit. Select Toolkit link and then click NEXT .

9. Enter the parameters:
1. Integration Server name: orders
2. Which type of image to run: App Connect Enterprise with MQ Client
3. Enter as Image pull secret: ibm-entitlement-key
4. Check Enable Operations Dashboard
5. Enter OO tracing instance namespace: tracing
6. Click Show Everything to On .

10. Scroll down and locate Configuration for deployments and click
the arrow to change the replica count to 1 and then click Create.

11. During the deployment process, App Connect Enterprise opens
the servers page. You see the App Connect Enterprise Dashboard with
the Integration Server orders deployed and started .Click
the orders server icon.

Note: The deployment process takes 2-3 minutes, refresh the browser
to see the BAR file .

12. Click the orders server. Click orders API.

13. This page displays the REST API Base URL. you use the base URL
(in the example below: http://orders-http-
ace.apps.demo.ibmdte.net:80/orders/v1).
Keep the browser opened in this page.

14. Open a Terminal Window, right mouse on desktop workspace
and select Open Terminal.

15. From the terminal window, execute the following curl command :
curl -k --request GET – url http://orders-http-
ace.apps.demo.ibmdte.net/orders/v1/0000000
If the API call is successful, you see JSON reply with {"accountid":"ABC-
1234567890","orderid":"0000000"} .

16. You check the message arrived in queue ORDERS in MQ (mq-1).
You can check using MQ Console. Open a browser and click Cloud Pak

Platform Navigator bookmark bar and click “Hambuger” menu, and then
select MQ application and click mq-1.

17. You see in Queues on mq window. The queue ORDERS has a
message (look at Queue Depth)

Task 6 – Configuring API Connect to test the integration
You've created an application integration flow and successfully called
it via a REST API call! Now, to make it accessible to the rest of the
world, it's important to add security around it—at least in the form of a
client ID .This way, in addition to access control, you can get insights
into which teams or customers are the least and most active. Adding
security to an API is simply done via an OpenAPI configuration
parameter. We can add rate limits to the API to increase the calls per
second, minute, or hour to scale up as much as you need.

1. Open the browser window opened where you have the orders API
window open. Click the URL under OpenAPI document.

2. A new browser tab opens, containing the swagger file. Right-click
anywhere in the body of the text and choose Save as. Click Save to save
the swagger.json file.

Note: You might need to confirm to replace.

3. Cloud Pak Navigator has a bookmark that you access all services. Click
“Hamburger” menu and select API Connect capability.

4. Click apic-1 instance.

5. In the API Connect page, click IBM Common Services user registry.

6. You might need to login to IBM Common Services. Juist click Log in

7. Click Develop APIs and Products .

8. Click Add, then choose API from the drop-down menu.

9. Choose From an existing OpenAPI service , scroll down and click Next .

10. Click Browse, select the downloaded swagger.json file (The file is
located under the /home/ibmuser/Downloads/swagger.json directory)
and click Open.

11. Make sure the JSON is successfully validated and then click Next.

12. Keep the settings and click Next.

13. Under "Secure using Client ID", "CORS” and Check “Activate
API”. Click Next.

14. Your API with Client ID is created! Click Edit API.

15. In the API Setup page. You configure your API.

16. In the Design page, click Properties and the click target-url link,
to enter the target gateway.

17. Enter as Name: target-url and Default Value
(optional): http://orders-http-ace.apps.demo.ibmdte.net .

18. Go to Security. Check the Security Definitions click Save .

19. To test the API, Click Assemble, then click the Test button .

20. In the Test window, click the operation and
choose get/(order). After the API is published, the Catalog, Product, Plan,
and Application are displayed under setup. The default plan has a rate
limit of 100 calls per hour.

21. The clientId fields auto-populate with the test application values.
Under parameters under order, enter a value 0000 .

22. Click Invoke. Scroll down and see Body and check the
results. You see a status code: 200 created with a response body
containing the results details.

Task 7 - Share the API
Now that you've built, secured, published, and tested your API, the
last step is to add it to the Asset Repository. With the Asset Repository,
your organization can store, manage, and share all of your integration
assets in one central location. Sharing assets in this way increases

collaboration between teams, avoids unnecessary duplication and
boosts productivity.

1. To push our new API to Asset Repository we must return to the API
Manager. From the Cloud Pak for Integration home page, choose apic-1 .

2. In the API Manager screen, click Develop APIs and Products.

3. Returning to the Develop Screen, select the menu next to your API and
from the drop-down, click Push to asset repository.

4. Once the upload completes, you see a success dialogue at top-right.

5. To access the Asset Repository, click assetrepo-1 .

6. You see the orders asset you pushed from API Connect in the previous
tasks.

7. Click the ellipsis and choose Open from the drop-down menu.to check
orders API.

8. You check the API overview.

9. Click Get/{order} link you see the API parameters.

10. Click Definitions and then click the Arrow (Order). You see an
example of results.

You’ve successfully added a review. Now your teammates know that
this asset is reusable and reliable. Additional information about the
asset is available in the sidebar including when the file was created, a
description that explains the purpose and use, and any relevant tags

Task 8 - Using Operations Dashboard (tracing)
Cloud Pak for Integration - Operations Dashboard Add-on is based on
Jaeger open source project and the OpenTracing standard to monitor
and troubleshoot microservices-based distributed systems.
Operations Dashboard can distinguish call paths and latencies.
DevOps personnel, developers, and performance engineers now have
one tool to visualize throughput and latency across integration
components that run on Cloud Pak for Integration. Cloud Pak for
Integration - Operations Dashboard Add-on is designed to help
organizations that need to meet and ensure maximum service
availability and react quickly to any variations in their systems.

1. Go to the IBM Pak Cloud Integration main page select View
events and click tracing to open the Operations Dashboard instance.

Note: You might see this page. Click the loading tracing to open tracing
page.

2. In the Tracing page, check the Overview page. You see all products that
you can use this tool: APIC ,APP Connect and MQ. (more tracing products
will add in the future releases).
.

3. You can monitor each product separately. Click App C overview.

4. See API Connect overview.

5. Operations Dashboard generated a list of tracing. Select a line to analyze

the trace of MQ App Connect Enterprise, and API Connect. select traces

icon the menu on the left. Select the line that you want to see
the trace.)] Enter the name of App Connect server name: ORDERS and
click the line (gen.orders) .

6. You see the tracing chart .

Summary
You have successfully completed this lab. In this lab you learned how
to:

• Deploy a back-end integration to containers that are readily available as a
scalable web service.

• Secure access to the back-end integration by creating a secure, governed
API using the OpenAPI definition of the integration.

• Use Operations Dashboard to tracing MQ, APIC and APPC
Now that you’ve made your back-end integrations ready for external
distribution, your developer community is able to access the APIs via a
developer portal. The developer portal is included in the platform and
provides a full-featured experience to onboard and nurture your API
consumers. To try out more labs, go to Cloud Pak for Integration
Demos. For more information about Cloud Pak for Integration, go
to https://www.ibm.com/cloud/cloud-pak-for-integration.

