IBM Software

Lab 04 Application Deployment and Management with
Operators

Contents

4.1 Tl a oo [T o1 o] o FOR SRR 1
4.2 (O] 0 1] = 1 o] ¢TSS P PP UPPPPPTPPINN 1
4.3 [Y i =1 (<Y F R 3
4.4 DEPIOYMENT USING OPEIATOIS .oiiitiiieeeiteeeccitee e ettt e eette e e eetre e e e etteeeestreeessataeeeebtaeeeansasessastaeassssasasansaeessanseneesnses 11
4.5 Day TWO Operations USING OPEIratorsuuuuuuuuiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeteteteseeeeeteeeteteeteetetetesseeeeseeeeeeseeeaeseesessees 25
4.6 (070 Vol [V 1] oY o S PSPPSR 30
Appendix: SKYTaP TiPS FOF [aS et e e e e e e e e e e ettt e e e e e e s eeabbaaeeeeaeeessstaaseaaeesaansses seennnnes 31
4.7 How to use Copy / Paste between local desktop and SKytap VIMl........couiieieieciiiccie et 31

4.1 Introduction

This is “Lab 04 - Liberty application deployment using Operators” from an IBM Cloud Pak for
Applications & App Modernization Proof of technology (PoT). The labs are not required to be executed in
order. And, you may skip labs, and only perform the labs that suit your desired learning objectives.

This lab assumes basic familiarity with Docker for building images, running containers, and employing
Kubernetes to deploy applications and route application traffic. This lab will introduce Operators which
are the preferred mechanism in Red Hat OpenShift Container Platform (RHOCP) for application
packaging, deployment, and management.

The full set of labs in the PoT are:
Lab01 - Getting started with Docker
Lab02 - Explore RedHat OpenShift Container Platform
Lab03 - Getting started with Kubernetes
Lab04 - Liberty application deployment using Operators
Lab05 — IBM Cloud Pak for Applications - App Modernization using Transformation Advisor
Lab06 — App Modernization with Java EE Microservices and Liberty
Lab07 — Using Tekton pipelines for CI/CD of microservices to RedHat OpenShift Container Platform

4.2 Operators

Operators in Kubernetes are extensions to the Kubernetes APl implemented as an application
specific controller for managing applications. Unlike the built-in Kubernetes controllers that are part
of the cluster control plane, operators are deployed as applications.

Operator instances are defined by a Custom Resource (CR) which create an Operator deployment
associated with a specific Custom Resource Definition (CRD). Stated another way, Operators are
defined by CRDs and deployed using a CR, and in turn an Operator manages a CR application

Lab 04 — Operators Page 1

IBM Software

deployment which is defined by a CRD.

This use of CR instances defined by a CRD, the operator, to manage CR instances defined by a
CRD, the application, is an example of Kubernetes being built with Kubernetes.

Note:

Did you notice that Kubernetes is used to deploy its own services?

There is a famous saying — "Kubernetes builds Kubernetes".

Page 2

IBM Cloud Pak for Applications - Application Modernization

IBM Software

4.3 Let's get started

1. Onyour laptop/workstation, locate the ICP4Av3.0.0.0 OCP3.11.153 RHEL76 virtual machine. The
VM should already be running. If not, Launch the Lab environment by clicking the Run this VM icon.

Powered off E RDP

ICP4Av3.0.0.0 OCP3.11.153 '
RHEL76
Endpoints: 1 (host-1 - 192.168.142.1)

METERED RAM STORAGE LICENSE
20GB ~ 100 GB -
Ao o [4o o X

__2. After the VM is running, click its icon to access the VM's desktop.

IRunning Il m () ror

ICP4Av3.0.0.0 OCP3.11.153 »*
RHEL76
Endpoints: 1 (host-1 - 192.168.142.1)

METERED RAM STORAGE LICENSE
20GB v 100 GB -

Ro o [4o = £ X

Lab 04 — Operators Page 3

IBM Software

__3. After the VM machine powers on, log with the ibmdemo user using the password password

Cancel

The ICP4Av3.0.0.0 0CP3.11.153 RHEL76 virtual machine running and its Desktop is displayed in
a web browser window.

B) 1CP4AV3.0.00 OCP311.153 RHELTS - VMware Workstation - o x
File Edit View VM Tabs Hep]+ & (T @ DEOS® M -
G' ICP4AVEN.0.0 OCPR1115...
- 20:40 ibmdema
=

i Applications

Note: Refer to the Appendix in this lab guide for details for using Copy /
7 Paste between the lab guide and the lab environment.

Page 4 IBM Cloud Pak for Applications - Application Modernization

IBM Software

_ 1. Click Terminal from the bottom of the desktop to open a command line terminal.

Em=ZQ¢Cam

You'll be running in the terminal as the user ibmdemo

Terminal - ibmdemo@icpda:~
File Edit WView Terminal Tabs Help
[ibmdemo@icpda ~1% |

t Note: Please note that if needed root access can be obtained with sudo su -

__ 2. Create a Docker image.
_a. Type cd student/labl
_b. Build a Liberty docker image named simpleapp by typing docker build -t simpleapp

(note the “.” at the end of the command, which will build an image named
simpleapp using the Dockerfile in the local directory “.”

[ibmdemo@icp4a lab1]$ docker build -t simpleapp .

Sending build context to Docker daemon 11.78 kB
Step 1/7 : FROM docker.io/ibmcom/websphere-liberty:19.0.0.6-kernel-ubi-min
---> 7810d7fa4666

Step 2/7 : COPY server.xml /config/

---> Using cache

---> 6edb30c0af77

Step 3/7 : COPY ServletApp.war /config/apps/
---> a3723ec150d9

Removing intermediate container 07c7632f0288
Step 4/7 : USER root

---> Running in e13bdf4044d8

---> 187f8d0995ed

Removing intermediate container e13bdf4044d8

Lab 04 — Operators Page 5

IBM Software

Step 5/7 : RUN chown default:root -R /opt/ibm/wlp/usr/servers/defaultServer
---> Running in 94ee6f6f54b4

---> 44b1984ac0c4

Removing intermediate container 94ee6f6f54b4
Step 6/7 : USER 1001

---> Running in b8131fa83b3e

---> 78589551606b

Removing intermediate container b8131fa83b3e
Step 7/7 : RUN configure.sh

---> Running in 5cb8b3f4a436

+ WLP_INSTALL_DIR=/opt/ibm/wlp

+ SHARED_CONFIG_DIR=/opt/ibm/wlp/usr/shared/config

+ SHARED RESOURCE_DIR=/opt/ibm/wlp/usr/shared/resources

+ SNIPPETS_SOURCE-=/opt/ibm/helpers/build/configuration_snippets
+ SNIPPETS_TARGET=/config/configDropins/overrides

+ mkdir -p /config/configDropins/overrides

+'["==true T

+ " ==true T
+["==true T
+["==true T
+T"==true T
+"==true T
+

+
+1
+

T"==trueT
== client]’
T " == embedded T

==true T

+["==true T

+ installUtility install --acceptLicense defaultServer

Checking for missing features required by the server ...

The server requires the following additional features: servlet-3.1. Installing features from the repository ...
Establishing a connection to the configured repositories - - -

This process might take several minutes to complete.

Successfully connected to all configured repositories.
Preparing assets for installation. This process might take several minutes to complete.
Additional Liberty features must be installed for this server.

To install the additional features, review and accept the feature license agreement:
The --acceptLicense argument was found. This indicates that you have
accepted the terms of the license agreement.

Step 1 of 4: Downloading servlet-3.1 ...
Step 2 of 4: Installing servlet-3.1 ...

Step 3 of 4: Validating installed fixes ...
Step 4 of 4: Cleaning up temporary files ...

All assets were successfully installed.

Start product validation...

Product validation completed successfully.

+ find /opt/ibm/fixes -type f -name "*.jar' -print0

+ sort -z

+ xargs -0 -n 1 -r -1 '{}' java -jar '{}' --installLocation /opt/ibm/wlp
+ find /opt/ibm/wlp -perm -g=w -print0

+ xargs -0 -r chmod -R g+rw

+ /opt/ibm/wlp/bin/server start

Page 6 IBM Cloud Pak for Applications - Application Modernization

IBM Software

Starting server defaultServer.
Server defaultServer started with process ID 103.
+ /opt/ibm/wlp/bin/server stop

Stopping server defaultServer.

Server defaultServer stopped.

+ rm -rf /output/resources/security/ /output/messaging /logs/console.log /logs/messages.log
/logs/messages_19.12.04_20.44.34.0.log /opt/ibm/wlip/output/.classCache

+ chmod -R g+rwx /opt/ibm/wlp/output/defaultServer

+ find /opt/ibm/wlp -type d -perm -g=x -print0

+ xargs -0 -r chmod -R g+rwx

---> 59258a04abcf

Removing intermediate container 5cb8b3f4a436

Successfully built 59258a04abcf

__ 3. Type cd ~/student/lab4

[ibmdemo@icp4a student]$ cd ~/student/lab4
[ibmdemo@icp4a lab4]$ $

__ 4. Login to OpensShift

_a. Type oc login and then enter ocpadmin for the username and ocpadmln (note
the “1”, not “i") for the password

Lab 04 — Operators Page 7

IBM Software

ibmdemo@icp4a 1ab4]$ oc login

Authentication required for https://icpda.pot.com:8443 (openshift)
Username: ocpadmin

Password:

Login successful.

You have access to the following projects and can switch between them with "oc project
<projectname>":

* default

istio-system
kabanero
knative-eventing
knative-serving
knative-sources
kube-public
kube-service-catalog
kube-system
1ab3
management-infra
openshift
openshift-console
openshift-infra
openshift-logging
openshift-metrics-server
openshift-monitoring
openshift-node
openshift-node-problem-detector
openshift-pipelines
openshift-sdn
openshift-web-console
operator-1lifecycle-manager
ta

Using project "default™.

This lab will use a new OpensShift project. An OpenShift project is a Kubernetes
namespace with some additional annotations which set the scope for the Objects, such as
pods, services, replication controllers, etc.;

Policies which are rules for the allowed actions; Constraints (or quotas) for each kind of
object, as well as Service Accounts for the project.

5. Type oc new-project lab4 which will create the lab4 project and switch your context to
that project

[ibmdemo@icpd4a lab4]$ oc new-project lab4

Now using project "lab4" on server "https://icp4a.pot.com:8443".

Page 8 IBM Cloud Pak for Applications - Application Modernization

IBM Software

__6. Before starting to review and modify the operator artifacts, run the following commands to tag and
push the simpleapp Docker image used with this lab to the local RHOCP image registry

docker tag simpleapp:latest docker-registry.default.svc:5000/lab4/simpleapp:latest
docker login -u $(oc whoami) -p $(oc whoami -t) docker-registry.default.svc:5000
docker push docker-registry.default.svc:5000/lab4/simpleapp:latest

[ibmdemo@icp4a lab4]$ docker tag simpleapp:latest docker-registry.default.svc:5000/lab4/simpleapp:latest
[[bmdemo@icp4a lab4]$ docker login -u $(oc whoami) -p $(oc whoami -t) docker-registry.default.svc:5000
Login Succeeded

[ibmdemo@icp4a lab4]$ docker push docker-registry.default.svc:5000/lab4/simpleapp:latest

The push refers to a repository [docker-registry.default.svc:5000/lab4/simpleapp]
08bc8e08e9a0: Layer already exists

fal60ac04f3f: Layer already exists

fd222008331e: Layer already exists

a052c31f2baf: Layer already exists

b78712e11f32: Layer already exists

0c65517b3677: Layer already exists

¢c6d9c7cf5338: Layer already exists

be36d206af93: Layer already exists

ba04059ad9a3: Layer already exists

71532d3a56e4: Layer already exists

790bcf471d32: Layer already exists

fe274995fb89: Layer already exists

9649117d0875: Layer already exists

9e19e22c9a42: Layer already exists

€9417d2583e6: Layer already exists

481324a7hba6d: Layer already exists

26429bebe019: Layer already exists

latest: digest: sha256:154e90f0a854f5c0337a24174265406c7d64241e3472780bb055ab3885129276 size: 3874
[ibmdemo@icp4a lab4$

. Note: If your results do not match those above, you need to check to see if you
t are working in the right OpenShift project, it should be lab4

The docker tag command tags the docker image for the RHOCP registry

The docker login command logs you into the OpenShift internal registry, using the OpenShift
username and password that you are currently logged in OpenShift.

The docker push command pushes the docker image to the OpenShift internal registry

Lab 04 — Operators Page 9

IBM Software

_ T

_ 8.

Type 1s to review the contents of this directory.

[ibmdemo@icp4a lab4]$ 1s

@1-createnfspv.yaml ©2-createpvc.yaml 99-cleanUpLab4.sh operator

Create a Persistent Volume and Persistent Volume Claim

This lab will use both a Kubernetes PersistentVolume and a Kubernetes PersistentVolumeClaim
employing NFS.

A PersistentVolume (PV) is a piece of storage in the cluster that has been provisioned by an
administrator or dynamically provisioned.

A PersistentVolumeClaim (PVC) is a request for storage by a user. It is similar to a Pod. Pods
consume node resources and PVCs consume PV resources.

Two yaml files @1-createnfspv.yaml and 02-createpvc.yaml have been provided to
provision these two Kubernetes objects. Review these yaml files to be familiar with their contents

_a. Type kubectl apply -f @1-createnfspv.yaml to create the persistent volumes

(note the use of kubectl, not oc this because pv’s are allocated for the cluster, not a
project)

[ibmdemo@icp4a lab4]$ kubectl apply -f 01-createnfspv.yaml
persistentvolume/vol@l created
persistentvolume/vol@2 created
persistentvolume/vol03 created
persistentvolume/vole4 created
persistentvolume/vol@5 created
persistentvolume/vol@6 created
persistentvolume/vol07 created
persistentvolume/vole8 created
persistentvolume/vol@9 created
persistentvolume/vol1l0 created
persistentvolume/volll created
persistentvolume/voll2 created
persistentvolume/voll3 created
persistentvolume/voll4 created
persistentvolume/voll5 created
persistentvolume/voll6 created
persistentvolume/voll7 created
persistentvolume/voll8 created
persistentvolume/voll9 created
persistentvolume/vol20 created
[ibmdemo@icpd4a lab4]$

Page 10

IBM Cloud Pak for Applications - Application Modernization

4.4

IBM Software

_b.Type oc apply -f ©2-createpvc.yaml to create the persistent volume claim

(note the use of oc to create the persistent volume claim scoped to the project, do not use
kubectl)

[ibmdemo@icpd4a lab4]$ oc apply -f ©2-createpvc.yaml
persistentvolumeclaim/simpleapp-serviceability created
[ibmdemo@icpd4a lab4]$

Deployment using Operators

Type 1s

[ibmdemo@icpda lab4]$ 1s
@1-createnfspv.yaml 02-createpvc.yaml 99-cleanUpLab4.sh operator

In addition to the yaml files and a script (.sh) file, there is a single directory operator which
is the Liberty Operator that we will use to deploy Liberty
application in this 1lab.

The Liberty Operator is included in IBM Cloud Pak for Applications
offering and is also available in the public Operator Hub.

Type cd operator thentype 1s There are two directories; application and deploy

[ibmdemo@icp4a lab4]$ cd operator

[ibmdemo@icpd4a operator]$ 1s

application deploy

__3. Welll start by reviewing the Operator file in the application directory,

_a.type cd application thentype 1s

[ibmdemo@icp4a operator]$ cd application
[ibmdemo@icp4a application]$ 1s
application-cr.yaml
openliberty.io_openlibertydumps_cr.yaml
openliberty.io_openlibertyapplications_crd.yaml
openliberty.io_openlibertytraces_crd.yaml
openliberty.io_openlibertyapplications_cr.yaml
openliberty.io_openlibertytraces_cr.yaml
openliberty.io_openlibertydumps_crd.yaml

Lab 04 — Operators Page 11

IBM Software

This directory has several artifacts, some are Custom Resource Definition (CRD) files, as
denoted by the crd in the name, the others are Custom Resource (CR) files as denoted by
the cr in the name.

__ 4. Let's start by reviewing the CRD files, first the application CRD
_a. Type gedit openliberty.io_openlibertyapplications_crd.yaml

This file defines all the attributes associated this CRD; pods, containers, environmental
variables, services, routes, etc. Scroll down to review the file, then click the x in the
upper right-hand corner to close the file when you are finished reviewing the file.

_m—

Save

If you've accidently made a change to the file, you'll be prompted with the following warning

Elz | T A
] Save changes to document
“openliberty.io_openlibertyapplications_crd.yaml”
before closing?

If you don't save, changes from the last 8 minutes will be
permanently lost.

E lose without Savin Cancel Save

Click Close without Saving to exit since we don’t want to make changes to this file.

__5. Review the other 2 CRD files using the “gedit” editor as you did in the previous step
_a.openliberty.io_openlibertydumps_crd.yaml
_b.openliberty.io_openlibertytraces_crd.yaml

Page 12 IBM Cloud Pak for Applications - Application Modernization

IBM Software

__6. Now let’s look at the CR files, first the application CR by typing gedit
openliberty.io_openlibertyapplications_cr.yaml

openliberty.io_openlibertyapplications_cr.y:
N E ~ftja/studentflabd/operatorfapplication

apiVersion: openliberty.io/vlbetal
kind: OpenlibertyApplication —{I

metadata: >
name: demo-app

spec:

replicas: 1 3 .
applicationImage: openliberty!open-liberty:full-javaS-openj@-ubi| -

expose: true
serviceability:
volumeClaimName: simpleapp-serviceability

Creates a CR instance kind of OpenLibertyApplication (defined in the CRD)
Assigns the name of demo-app to the CR (optional)

Specifies the number of replicas in the deployment (optional)

Specifies the name of the image to be used to create the application (required)

Also included, but commented out, are some additional optional attributes which will be
used later in the lab

a kw0 nNPRE

Note” Only the kind parameter value and the applicationImage parameter value are
required to deploy an OpenLibertyApplication CR instance, the rest are optional.

KEEP THE EDITOR OPEN. You will modify the contents of the CR in the next step.

Lab 04 — Operators Page 13

IBM Software

__7. We’re going to modify this CR for the lab, so that the Kubernetes deployment resources
associated with this CR have a readily recognizable name. Make the following changes to the
CR

_a. As shown below, change the name value (1) from demo-app to simpleapp

_b. As shown below, change the applicationImage parameter (2) from
openliberty/open-1liberty:full-java8-openj9-ubi to docker-
registry.default.svc:5000/lab4/simpleapp:latest (this is image tagged and pushed
previously in this lab)

Open ~ A .mpenl|be.rttyjt:lfzta.(rfttaEII|.E)T_tx;:?Bll.llﬁi?ﬂi(.)l‘ns_cr.yaml Fepi = _ o x

apiVersion: openliberty.io/vlbetal
kind: OpenLibertyApplication
metadata:

name: simpleapp @

spec:
replicas: 1
applicationImage: docker-registry.defatlt.svc:5000ﬁ1ab4fsimpleapp:latesﬂ

expose: true

serviceability:
volumeClaimName: simpleapp-serviceability

_c. Click Save
_d. Click the x to close the file

__8. Atthis point, we can create the Custom Resource Definitions (CRDs) associated with the
OpenLibertyOperator.

_a. type the following commands to create the Liberty Operator Custom Resource
Definitions.

oc apply -f openliberty.io_openlibertyapplications_crd.yaml
oc apply -f openliberty.io_openlibertydumps_crd.yaml
oc apply -f openliberty.io openlibertytraces_crd.yaml

[ibmdemo@icpd4a application]$ oc apply -f
openliberty.io_openlibertyapplications_crd.yaml
customresourcedefinition.apiextensions.k8s.io/openlibertyapplications.openliberty.io
created

[ibmdemo@icp4a application]$ oc apply -f openliberty.io_openlibertydumps_crd.yaml
customresourcedefinition.apiextensions.k8s.io/openlibertydumps.openliberty.io created
[ibmdemo@icp4a application]$ oc apply -f openliberty.io openlibertytraces crd.yaml
customresourcedefinition.apiextensions.k8s.io/openlibertytraces.openliberty.io created
[ibmdemo@icpd4a application]$

Creation of the CRDs for the OpenLibertyOperator only needs to be performed once per
cluster

Page 14 IBM Cloud Pak for Applications - Application Modernization

IBM Software

__9. Listthe new OpenLiberty CRDs in the cluster

oc get crd | grep openliberty

[ibmdemo@icp4a application]$ oc get crd | grep openliberty

openlibertyapplications.openliberty.io 2020-07-23T19:09:57Z
openlibertydumps.openliberty.io 2020-07-23719:10:117
openlibertytraces.openliberty.io 2020-07-23T19:10:29Z

[ibmdemo@icp4a application]$

_10. Next, you will deploy the OpenLibertyOperator
_a.Type cd ../deploy thentype ls

[ibmdemo@icpd4a application]$ cd ../deploy

[ibmdemo@icp4a deploy]$ 1s
operator.yaml role_binding.yaml role.yaml service_account.yaml

The yaml files in this directory are used to deploy the operator and create security resources
used by the operator.

Before deploying them, you will modify them so that the operator and security resources have
a readily recognizable name associated with the application

Lab 04 — Operators Page 15

IBM Software

__11. Edit the operator Deployment by typing gedit operator.yaml

_a. Change the 5 occurrences indicated below of open-1iberty-operator to
simpleapp-operator

_b. Click Save (in the upper right corner)
_c. Click the x (in the upper right corner) to close the file

apiVersion: apps/vl
kind: Deployment

metadata:
spec:
1

replicas: change
selector: "open-liberty-operator”

matchlLabels.: tq
nameg” open-liberty-operator "simpleapp-operator’
template:

metadata:

labels:
name :Copen-liberty-operator)

spec:

serviceAccountNamés _.c_;aen -liberty-operata E'.D

containers:

- name: Qpen-liberty-operator

image: openliberty/operator:0.3.0

command : j

do not change

)

- open-liberty-operator
imagePullPolicy: Always
env:
- name: WATCH_NAMESPACE
valueFrom:
fieldRef:
fieldPath: metadata.namespace
- name: POD_NAME
valueFrom:
fieldRef:
fieldPath: metadata.name
- name: OPERATOR_NAME
value: "open-liberty-operator”

do not change

1

1

do not change j

Page 16 IBM Cloud Pak for Applications - Application Modernization

__12. Edit the RoleBinding resource by typing gedit role_binding.yaml

_a. Change the 3 occurrences indicated below of open-1iberty-operator to
simpleapp-operator

_b. Click Save (in the upper right corner)
_c. Click the x (in the upper right corner) to close the file

IBM Software

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/vl

metadata: change
name::EEE§3Iiberty-operafﬁf:) "open-liberty-operator’

subjects: to

- kind: ServiceAccount "simpleapp-operator’
name: en-Lliberty-operato

r::l»:aRef:ﬁc —)
kind: Role

name:<ﬁben-libertyLoperatoE>
apiGroup: rbac.authorization.k8s.io

__13. Edit the Role resource by typing gedit role.yaml

_a. Change the 2 occurrences indicated below of open-1iberty-operator to
simpleapp-operator (you'll need to scroll down to find the 2" one)

_b. Click Save (in the upper right corner)
_c. Click the x (in the upper right corner) to close the file

apiVersion: rbac.authorization.k8s.io/vl
kind: Role
metadata:
creatio o
name:{open-liberty-operator
rules:
- aniGroups:

- apiGroups:
- apps

esourceNames:
nen-liberty-operator

resources:
- deployments/finalizers
verbs:
- update

- apiGroups:

Lab 04 — Operators

Page 17

IBM Software

__14. Edit the ServiceAccount resource by typing gedit service_account.yaml
_a. Change the occurrence indicated below of openliberty-operator to simpleapp-
operator
_b. Click Save (in the upper right corner)
_c. Click the x (in the upper right corner) to close the file

apiVersion: vl

kind: ServiceAccount

metadata:
name :{open-Lliberty-operator

__15. Deploy the ServiceAccount, Role and RoleBinding resources, using the following
commands:

oc apply -f service_account.yaml
oc apply -f role.yaml
oc apply -f role_binding.yaml

[ibmdemo@icp4a deploy]$ oc apply -f service_account.yaml
serviceaccount/simpleapp created

[ibmdemo@icp4a deploy]$ oc apply -f role.yaml
role.rbac.authorization.k8s.io/simpleapp-operator created

[ibmdemo@icp4a deploy]$ oc apply -f role_binding.yaml
rolebinding.rbac.authorization.k8s.io/simpleapp-operator created

__16. Now deploy the operator by typing oc apply -f operator.yaml thentype oc get pods
every few seconds until the operator pod is Running and Ready 1/1 (as shown below)

[ibmdemo@icp4a deploy]$ oc apply -f operator.yaml
deployment.apps/simpleapp-operator created

[ibmdemo@icp4a deploy]$ oc get pods
NAME READY STATUS RESTARTS AGE
simpleapp-operator-5d7446f446-5sx5h 0/1 ContainerCreating © 8s

[ibmdemo@icp4a deploy]$ oc get pods
NAME READY STATUS RESTARTS AGE
simpleapp-operator-5d7446f446-5sx5h 1/1 Running © 15s

If your results do not match those above, you need to check to see if you are working in the
right OpenShift project, it should be lab4.

Page 18 IBM Cloud Pak for Applications - Application Modernization

IBM Software

__17.Type oc get all which will list all the resources in the project, note that the deploying the

operator resulted in a pod, deployment, and replicaset being created

[ibmdemo@icp4a deploy]$ oc get all

000c29ef9df2 True

NAME READY STATUS RESTARTS AGE
pod/simpleapp-operator-5d7446f446-5sx9h 1/1 Running © Im

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
deployment.apps/simpleapp-operator 1 1 1 1 im
NAME DESIRED CURRENT READY AGE
replicaset.apps/simpleapp-operator-5d7446f446 1 1 1 im
NAME DOCKER REPO

TAGS UPDATED

imagestream.image.openshift.io/simpleapp docker-
registry.default.svc:5000/1lab4/simpleapp latest 16 hours ago

NAME READY REASON
AGE

clusterchannelprovisioner.eventing.knative.dev/in-memory True

2d

clusterchannelprovisioner.eventing.knative.dev/in-memory-channel True

2d

NAME

READY REASON

clusteringress.networking.internal.knative.dev/route-17del3e9-fe3a-11e9-9829-

__18. With the operator running, now deploy the CR using the file modified earlier to provide

explicit reference to the simpleapp application

oc apply -f

../application/openliberty.io_openlibertyapplications_cr.yaml

[ibmdemo@icp4a deploy]$ oc apply -f
../application/openliberty.io_openlibertyapplications_cr.yaml

openlibertyapplication.openliberty.io/simpleapp created
[ibmdemo@icp4a deploy]$

Lab 04 — Operators

Page 19

IBM Software

__19. Type oc get pods to check the status of the application pod. While this pod should
start very quickly, you may need to repeat this command a couple of times until the pod is
Running and Ready 1/1 (as shown below)

[ibmdemo@icpd4a deploy]$ oc get pods

NAME READY STATUS RESTARTS AGE
simpleapp-55ff8cbb7-snmnj 1/1 Running © 3s
simpleapp-operator-5d7446f446-jdxng 1/1 Running © 4m

_20. Type oc get all which will list all the resources in the project

Note that the in addition to the operator pod, deployment, and replicaset, there’s now a
pod, deployment and replicaset for the simpleapp application, as well as a ClusterIP
service and a route for simpleapp.

[ibmdemo@icpd4a deploy]$ oc get all

NAME READY STATUS RESTARTS AGE
pod/simpleapp-55ff8cbb7-snmnj 1/1 Running © 2m
pod/simpleapp-operator-5d7446f446-jdxng 1/1 Running © 4m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/simpleapp ClusterIP 172.30.2.243 <none> 9080/TCP 2m

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
deployment.apps/simpleapp 1 1 1 1 2m
deployment.apps/simpleapp-operator 1 1 1 1 4m
NAME DESIRED CURRENT READY AGE
replicaset.apps/simpleapp-55ff8cbb7 1 1 1 2m
replicaset.apps/simpleapp-operator-5d7446f446 1 1 1 2m
NAME DOCKER REPO

TAGS UPDATED

imagestream.image.openshift.io/simpleapp docker-
registry.default.svc:5000/1lab4/simpleapp latest 20 minutes ago

NAME

READY REASON
clusteringress.networking.internal.knative.dev/route-17del3e9-fe3a-11e9-9829-
000c29ef9df2 True NAME

READY REASON
clusteringress.networking.internal.knative.dev/route-17del3e9-fe3a-11e9-9829-
000c29ef9df2 True

Page 20 IBM Cloud Pak for Applications - Application Modernization

IBM Software

__21.You can access the application using the ClusterIP

_a. Open the Chrome browser and using the ClusterIP for your deployment construct the
following URL http://<ClusterIP>:9080/Simple

in the example above, this is http://172.30.2.243:9080/Simple

Note: the ClusterlP in your environment will be different

@ 172.30.2.243:9080/Simple X +

<« > C 1t @ Notsecure| 172.30.2.243:9080/Simple

$ Apps £3 Login- OpenSh... e IBM Cloud Tran... & Tekton Dashbo...

Simple Servlet ran successfully

Powered by WebSphere Application Server Liberty Profile

__22.Now let’s change the number of replicas to scale the application. Then expose the
application to the outside world via a Route. You will simply change the parameters in the CR
for the application and apply the updates.

Type gedit
../application/openliberty.io openlibertyapplications_cr.yaml
_a.Change the replicas from1l to 2 (as indicated below)
_b. Remove the # prior to expose parameter
_c. Click Save (in the upper right corner)
_d. Click the x (in the upper right corner) to close the file

*openliberty.io_openlibertyapplications_cr.yaml
Hrmrhs E ~ftjafstudent/labd4foperator/application

apiVersion: openliberty.io/vlbetal
kind: OpenlLibertyApplication
metadata:

name: simpleapp Change from "1" to" 2" j
spec:
replicas: 2|

applicationImage: docker-registry.default.svc:5000/1ab4/simpleapp:latest

expose: true ﬁ o j
serviceability: Remove "#" to uncomment

volumeClaimhame: simpleapp-serviceability

Lab 04 — Operators Page 21

IBM Software

_23. Apply the changes to the OpenShift Cluster

_a. Type oc apply -f
../application/openliberty.io_openlibertyapplications _cr.yaml

_b.type oc get pods to see the following results
= New pods being created in the existing replicaset
= New pods being created in the new replicaset

= The pods in the existing repilcaset terminating

[ibmdemo@icp4a deploy]$ oc apply -f
../application/openliberty.io_openlibertyapplications_cr.yaml
openlibertyapplication.openliberty.io/simpleapp configured

[ibmdemo@icp4a deploy]$ oc get pods

NAME READY STATUS RESTARTS AGE
simpleapp-6bd779d769-fdq45 1/1 Running 0 11m
simpleapp-6bd779d769-m4fps 1/1 Terminating (%] 6s
simpleapp-758689c4fd-46rzl 0/1 ContainerCreating © 2s
simpleapp-758689c4fd-chc8z 1/1 Running (%] 6s
simpleapp-operator-5d7446f446-2xs7z 1/1 Running 0 12m
[ibmdemo@icp4a deploy]$ oc get pods

NAME READY STATUS RESTARTS AGE
simpleapp-6bd779d769-m4fps 1/1 Terminating © 28s
simpleapp-758689c4fd-46rzl 1/1 Running 0 24s
simpleapp-758689c4fd-chc8z 1/1 Running (%] 28s
simpleapp-operator-5d7446f446-2xs7z 1/1 Running (%] 12m
[ibmdemo@icp4a deploy]$ oc get pods

NAME READY STATUS RESTARTS AGE
simpleapp-758689c4fd-46rzl 1/1 Running © 34s
simpleapp-758689c4fd-chc8z 1/1 Running © 38s
simpleapp-operator-5d7446f446-2xs7z 1/1 Running © 12m

__24.type oc get rs to see the following results of the two replicasets

[ibmdemo@icp4a deploy]$ oc get rs

NAME DESIRED CURRENT READY AGE
simpleapp-6bd779d769 (%] (%] (%] 11m
simpleapp-758689c4fd 2 2 2 43s
simpleapp-operator-5d7446f446 1 1 1 12m

Page 22 IBM Cloud Pak for Applications - Application Modernization

IBM Software

Now, let's view the and test the route that we created by setting expose: true in the CR.

_ 25.Type oc get route (oroc get all which will list the route along with the pods, etc)

[ibmdemo@icp4a deploy]$ oc get route

NAME HOST/PORT PATH SERVICES PORT
TERMINATION WILDCARD

simpleapp simpleapp-lab4.apps.icpda.pot.com simpleapp 9080-tcp
None

__26.Construct the browser URL <route>/Snoop
simpleapp-lab4.apps.icp4a.pot.com/Snoop based on the route shown above

Next, you will test the route to the application, and that traffic is load balanced
between the two pods that are running the simpleapp application.

__27.0pen one incognito window (this to avoid HTTP session pining requests to one pod)

@ zbout:blank X + \f x

cC 0O (G) labout:blank 'ﬁ') (2]

i Apps £J Login- OpenSh... & IBM Cloud Tran... & Tekton Dashbo... New tab Ctrl+T
New window Ctri+N

T —— New incognito window Ctrl+Shift+N

__28. Enter the URL from above in both windows, note that the local address and localhost
differ in each Snoop output. It corresponds to the IP inside the pod and the pod handing the
request. The route provides a common path to all instances (you may need to reload on of
the browsers a couple times to see different pods (local IP address handling the request)

Lab 04 — Operators Page 23

IBM Software

¥ SNoop Serviet

€ > C Y @ Notsecure | simpleapp-lab4.apps.icp4a.po|

x

+

w7 SIUUp SEIVIEL

~ T

&€ > C { @ Notsecure | simpleapp-lab4.apps.icp4a.pot.com/Snoop

! apps € Login 2 IBM Cloud Tran... @ TektonDq &J Login- OpenSh... «2 IBM Cloud Tran... [Tekton Dashbo...
Kequest metnoa GEL

Request method GET Request URI /Snoop

Request URI /Snoop Request protocol HTTP/1.1

Request protocol HTTP/1.1 Servlet path /Snoop

Servlet path /Snoop Path info <none>

Path info <none> Path translated <none>

Path translated <none> Character encoding <none>

Character encoding <none> Query string <none>

Query string <none= Content length <none>

Content length <none> Content type <none>

Content type <none= Server name simpleapp-lab4.apps.icp4a.pot.com

Server name simpleapp-lab4.apps.icp4a.pot.q ([Server port 80

Server port 80 Remote user <none>

Remote user <none> Remote address 10.128.0.1

Remote address 10.128.0.1 Remote host 10.128.0.1

Remote host 10.128.0.1 Remote port 48756

Remote port 57578 Local address Af0.128.1.29 TN

Local address] 10.128.1.31 Local host \nsim;_LlEng—?Sﬁiiﬁgctifd—c_]Egz‘/

Local host Tlsimpleapp-758689c4fd-46ezt~ | |[Local port [o080

Page 24

IBM Cloud Pak for Applications - Application Modernization

IBM Software

4.5 Day Two Operations using Operators

__ 1. There are currently two “day two operations” provided by the Open Liberty Operator:
dumps and tracing. Both a configured in a similar manner

_a. Add storage to the pods for serviceability (dumps and traces) by changing the CR for
the application deployment

_b. Deploying a CR for tracing or dumps
Though this lab will only demonstrate tracing
__ 2. Type gedit
../application/openliberty.io_openlibertyapplications_cr.yaml
_a. Remove the # prior to serviceability parameter
_b. Remove the # prior to the volumeClaimName parameter
_c. Click Save (in the upper right corner)
_d. Click the x (in the upper right corner) to close the file

*openliberty.io_openlibertyapplications_cr.yaml
EEET (] ~/tja/student/lab4/operator/application —

apiVersion: openliberty.io/vlbetal
kind: OpenLibertyApplication
metadata:
name: simpleapp
spec:
replicas: 2
applicationImage: docker-registry.default.svc:5000/lab4/simpleapp:latest

expose: true £ Remove "#" to uncomment
serviceability:

volumeClaimName: simpleapp-serviceability ﬁRemo”e "4 t0 Uncomment j

3. Type oc apply -f
../application/openliberty.io_openlibertyapplications_cr.yaml

to deploy the updated application deployment

__ 4. Type oc get pods to see the old pods terminating and new pods starting. waiting until
the new pods are Running and Ready

Lab 04 — Operators Page 25

IBM Software

[ibmdemo@icpd4a deploy]$ oc get pods

NAME READY STATUS RESTARTS AGE
simpleapp-758689c4fd-chc8z 0/1 Terminating © 9m
simpleapp-859f6b947b-7x7zg 1/1 Running (%] 18s
simpleapp-859f6b947b-cl9rp 1/1 Running (%] 14s
simpleapp-operator-5d7446f446-2xs7z 1/1 Running 0 1h
[ibmdemo@icp4a deploy]$ oc get pods

NAME READY STATUS RESTARTS AGE
simpleapp-859f6b947b-7x7zg 1/1 Running © 19s
simpleapp-859f6b947b-cl9rp 1/1 Running © 15s
simpleapp-operator-5d7446f446-2xs7z 1/1 Running © 1h
[ibmdemo@icp4a deploy]$

__5. Copy the name one of the pods from your list (e.g. simpleapp-859f6b947b-7x7zg as
shown above)

__6. Type gedit ../application/openliberty.io_openlibertytraces_cr.yaml

*openliberty.io_openlibertytraces cr.yaml
~ftjia/student/lab4/operator/application

Open ¥ | H

apiVersion: openliberty.io/vlbetal

kind: OpenLibertyTrace
netadata:
name: example-trace

podName: Specify Pod _Name Here
traceSpecification: "*=info:com.ibm.ws.webcontainer*=all"

_a.Replace example-trace with simpleapp-trace

_b.Replace Specify Pod_Name_Here with the pod name copied from above (the pod
name from your environment will differ)

*openliberty.io_openlibertytraces_cr.
~(tjafstudent/labd/operatorfapplication

Open ¥ || [

apiVersion: openliberty.io/vlbetal
kind: OpenlLibertyTrace
netadata:
name: simpleapp-trace —
spec:
podName: simpleapp-859ft6b947b-7x7zg
traceSpecification: "*=info:com.ibm.ws.webcontainer*=all"

_c. Click Save and x, both in the upper right, to close gedit

Page 26 IBM Cloud Pak for Applications - Application Modernization

IBM Software

. Type oc apply -f
../application/openliberty.io_openlibertytraces_cr.yaml to deploy
the updated configuration for tracing.

[[ibmdemo@icpd4a deploy]$ oc apply -f
../application/openliberty.io_openlibertytraces_cr.yaml

openlibertytrace.openliberty.io/simpleapp-trace created

Type oc get oltrace (oltrace is a abbreviation for openlibertytrace.openliberty.io) to
insure that the trace is enabled (True)

[ibmdemo@icpd4a deploy]$ oc get oltrace
NAME PODNAME TRACING
simpleapp-trace simpleapp-859f6b947b-7x7zg True

Type oc get pv to see which NFS shared storage directory is being used for the trace
output by the persistent volume claim.

In the output below the pv vol 12 has been bound to simpleapp-serviceability.
This means that the output from the trace located in files system location
/share/sharel2/lab4/simpleapp-serviceability. There are 20 directories,
share@1 through share20 under /share

[ibmdemo@icpd4a deploy]$ oc get pv
<list abbreviated>

volll 20G1i RWO Recycle Available

pot 1d

voll2 20Gi RWO Recycle Bound lab4/simpleapp-
serviceability pot 1d

voll3 20Gi RWO Recycle Available

pot

<list abbreviated>

__10.0pen a new terminal window, type cd /share/share<vol#>/lab4/

Example: cd /share/sharel2/1ab4/ inthe case above, the volume will likely
differ for you)

__11.Type 1s to list the contents of the directory

[ibmdemo@icp4a ~]$ cd /share/sharel2/lab4

[ibmdemo@icp4a lab4]$ 1s
simpleapp-859f6b947b-7x7zg

Lab 04 — Operators

Page 27

IBM Software

__12. A directory is created for every pod with an Open Liberty Trace simpleapp-859f6b947b-
7x7zg in this example (your pod number will differ as previously noted)

__13.Type cd <your pod number> then type 1s

[ibmdemo@icp4a lab4]$ cd simpleapp-859f6b947b-7x7zg/
[ibmdemo@icp4a simpleapp-859f6b947b-7x7zg]$ 1s
messages.log trace.log

Two log files are output to this directory: messages.log and trace.log

__14. The files can be examined using cat, view or tail or other tools, but since the files are
owned by root, you'll need to use the sudo command e.g oc

Note: sudo password: passwOrd

[ibmdemo@icp4a simpleapp-859f6b947b-7x7zg]$ sudo tail -f trace.log

__15. The output from the tail command above will look like the following, varying slightly
based on how quickly you access the trace.log

3/14/20 20:36:33:811 GMT] ©000003c id=00000000
m.ws.webcontainer.collaborator.WebAppTransactionCollaborator < postInvoke RETURN null
[3/14/20 20:36:33:812 GMT] ©000003c 1d=00000000 com.ibm.ws.webcontainer.webapp.WebApp
1 finishEnvSetup exit

[3/14/20 20:39:11:816 GMT] 00000R4e id=0000000O com.ibm.ws.webcontainer.webapp.WebApp
1 startEnvSetup enter

[3/14/206 20:39:11:830 GMT] ©000004e id=00000000
m.ws.webcontainer.collaborator.WebAppTransactionCollaborator > preInvoke ENTRY null
true

[3/14/20 20:39:11:833 GMT] ©000004e id=00000000

m.ws .webcontainer.collaborator.WebAppTransactionCollaborator < preInvoke RETURN null
[3/14/20 20:39:11:836 GMT] ©000004e 1d=0000000O com.ibm.ws.webcontainer.webapp.WebApp
1 startEnvSetup exit

[3/14/20 20:39:11:841 GMT] ©000004e id=00000000 com.ibm.ws.webcontainer.webapp.WebApp
1 finishEnvSetup enter

[3/14/206 20:39:11:843 GMT] ©000004e id=00000000
m.ws.webcontainer.collaborator.WebAppTransactionCollaborator > postInvoke ENTRY null
null true

[3/14/206 20:39:11:845 GMT] ©000004e id=00000000
m.ws.webcontainer.collaborator.WebAppTransactionCollaborator < postInvoke RETURN null
[3/14/26 20:39:11:847 GMT] ©000004e 1d=0000000O com.ibm.ws.webcontainer.webapp.WebApp
1 finishEnvSetup exit

[3/14/20 20:41:49:849 GMT] 00000056 id=000000OO com.ibm.ws.webcontainer.webapp.WebApp
1 startEnvSetup enter

Page 28 IBM Cloud Pak for Applications - Application Modernization

IBM Software

To generate trace based on application requests, application traffic needs to be directed to
the pod that trace is enabled on.

Since there are two pods in the simpleapp deployment and trace was only enabled for one
pod, using the cluster address for a pod is the quickest way to directly access a specific
pod.

The cluster address is different than a ClusterlIP. The ClusterlP is a Cluster service
address for accessing all pods in a deployment. The cluster address is the internal address
used to access a pod in a cluster, which is only accessible for a node in the cluster.

Fortunately, this PoT is using an All In One cluster, so we can access pods using the cluster
address.

__16. To determine the cluster ip address for the pod you enabled trace on, run the following
commands for the <pod-name> that you enabled trace on.

_a. Go back to the first terminal window where the OCP CLI is running and type oc get
pods

_b. Type oc describe pod <pod-name> | grep IP

Note: substitute your pod-name for the one used here

[ibmdemo@icp4a share]$ oc describe pod simpleapp-859f6b947b-7x7zg | grep IP

IP: 10.128.1.32

Enter the following URL in the browser <cluster address>:9080/Snoop in the case
of the IP address above the URL is 10.128.1.32:9080/Snoop (Your IP will likely

differ).
@ Snoop Servlet x| +
€« C @ Notsecure | 10.128.1.32:9080/Snoop
i Apps €5 Login- OpenSh... e IBM Cloud Tran... & Tekton Dashbo...

Snoop Servlet - Request/Client Information

Requested URL:

[http://10.128.1.32:9080/Snoop

Lab 04 — Operators Page 29

IBM Software

__17. Refresh the request several times in the browser will monitoring the trace output in the
second terminal window where tail -f trace.log is running trace output. Output as
shown will scroll by as the requests are processed.

NOTE it may take several seconds for the request trace output to be written from the pod to
the log on the file system.

handleRequest complete for--> [/Snoop], mapped webApp context
[com.ibm.ws.webcontainer31l.osgi.webapp.WebApp31@551251ea[ServletApp#ServletApp.war

__18. Enter Ct1+C in the command shell where tail -f traces.logis running to exit tail

[3/14/206 20:51:19:314 GMT] ©00000Ob8 i1d=00000000 com.ibm.ws.webcontainer.webapp.WebApp
1 finishEnvSetup exit

~C

[ibmdemo@icp4a simpleapp-859f6b947b-7x7zg]$

__19. Perform the following steps once you're finished

_a. Close all browser windows

_b. In an open command shell type cd ~/student/lab4

_C. In the command shell used in step “b” above, type ./99-cleanUplLab4.sh
_d. Close all open command shells

[3/14/20 20:51:19:314 GMT] ©0000Ob8 id=000OOVOO com.ibm.ws.webcontainer.webapp.WebApp
1 finishEnvSetup exit

~C

[ibmdemo@icpd4a simpleapp-859f6b947b-7x7zg]$

46 Conclusion

You have now seen how deploy an application using an operator, as well as how an operator can be
employed to perform "day 2" administration tasks for the application deployment.

End of Lab 04 — Liberty application deployment using Operators

Page 30 IBM Cloud Pak for Applications - Application Modernization

IBM Software

Appendix: SkyTap Tips for labs

4.7 How to use Copy / Paste between local desktop and Skytap VM

Using copy / Paste capabilities between the lab document (PDF) on your local workstation to the VM
is a good approach to more efficiently work through a lab, while reducing the typing errors that often
occur when manually entering data.

1. In SkyTap, you will find that any text copied to the clipboard on your local workstation is not available
to be pasted into the VM on SkyTap. So how can you easily accomplish this?

__a. First copy the text you intend to paste, from the lab document, to the clipboard on your local
workstation, as you always have (CTRL-C)

__b. Return to the SkyTap environment and click on the Clipboard at the top of the SkyTap
session window.

F oM O cnmos E R E Al

__C. Use CTRL-V to paste the content into the Copy/paste VM clipboard. Or use the paste menu
item that is available in the dialog, when you right mouse click in the clipboard text area.

= om O coane EB K E al

VM Clipboard

Copy/paste:
_ 1 How to use Copy / Paste between local desktop and Skytap VIM?
Copy from your local machine to a VM: Copy from a VM to your local machine:
Paste content from your local machine into the Selecting content within the VM populates the
copy/paste area above. You can then paste that copy/paste area. Select and copy the contents of
content within the VM. Learn more this field to paste locally. Learn more

__d. Once the text is pasted, just navigate away to the VM window where you want to paste the
content. Then, use CTRL-C, or right mouse click & us the paste menu item to paste the
content.

Lab 04 — Operators Page 31

IBM Software

e W

ibmdemo@ubuntu: ~
ibmdemo@ubuntu:~$ D

Open Terminal
Open Tab

Close Window

Paste

Profiles
v Show Menubar

__e. The textis pasted into the VM

o om O cwaoe ER K B Jal

P

ibmdemo@ubuntu: ~
bmdemo@ubuntu:~$ __1. How to use Copy / Paste between local desktop and Skytap
2

Note: The very first time you do this, if the text does not paste, you may have to paste the contents into the
Skytap clipboard twice. This is a known Skytap issue. It only happens on the 1st attempt to copy / paste into
Skytap.

Page 32 IBM Cloud Pak for Applications - Application Modernization

