
IBM Software

Lab 06 – Application Modernization with Microservices Page 1

33

Lab 06 Application Modernization with Java EE Microservices
and Liberty

Contents
6.1 Introduction ... 1

6.2 Microservices... 2

6.3 Let’s get started ... 3

6.4 Conclusion ... 32

Appendix 1 – Servlet Filter .. 33

Appendix 2 – Image Service Implementation ... 35

Appendix: SkyTap Tips for labs .. 37

6.5 How to use Copy / Paste between local desktop and Skytap VM .. 37

In this lab exercise, we start to refactor a monolith Java EE application by moving one of its
functions into a microservice and modifying the application to access the microservice via REST.

Over time, this pattern of moving services from an application to a microservice will allow for the
eventual sunset of the initial monolithic application, once all functions have been deployed as
microservices.

6.1 Introduction

This is “Lab 06 – App Modernization with Java EE Microservices and Liberty” from an IBM Cloud Pak
for Applications & App Modernization Proof of technology (PoT). The labs are not required to be executed
in order. And, you may skip labs, and only perform the labs that suit your desired learning objectives.

The full set of labs in the PoT are:

Lab01 - Getting started with Docker

Lab02 - Explore RedHat OpenShift Container Platform

Lab03 - Getting started with Kubernetes

Lab04 – Liberty application deployment using Operators

Lab05 – IBM Cloud Pak for Applications - App Modernization using Transformation Advisor

Lab06 – App Modernization with Java EE Microservices and Liberty

Lab07 – Using Tekton pipelines for CI/CD of microservices to RedHat OpenShift Container Platform

IBM Software

Page 2 IBM Cloud: Application Modernization

6.2 Microservices

The Plants By WebSphere application has been broken into two parts for this lab:

The original monolith (in the image below) has been modified with a Servlet Filter to intercept requests

for images and redirect the requests to a new microservice application (in the image below).

The microservice exposes the image service via a JAX-RS interface which accesses the image library in the
application EAR file and images in the database via JPA reusing the same code that was used in the
monolith.

Appendix 1 and Appendix 2 contain the Servlet Filter and Image Service code

IBM Software

Lab 06 – Application Modernization with Microservices Page 3

6.3 Let’s get started

First, launch the lab environment and login to the VM.

On your laptop/workstation, locate the ICP4Av3.0.0.0 OCP3.11.153 RHEL76 virtual machine

__1. The VM should already be running. If not, Launch the Lab environment by clicking the Run this VM
icon.

__2. After the VM is running, click its icon to access the VM’s desktop.

IBM Software

Page 4 IBM Cloud: Application Modernization

__3. After the VM machine powers on, log with the ibmdemo user using the password passw0rd.

The ICP4Av3.0.0.0 OCP3.11.153 RHEL76 virtual machine running and its Desktop is displayed in

a web browser window.

IBM Software

Lab 06 – Application Modernization with Microservices Page 5

__4. Click Terminal from the bottom of the desktop to open a command line terminal.

You’ll be running in the terminal as the user ibmdemo

Note: Please note that if needed root access can be obtained with sudo su -

IBM Software

Page 6 IBM Cloud: Application Modernization

__5. Type oc login to login to OpenShift. Use ocpadmin for the username and ocpadm1n (note the

“1”, not “i”) for the password

ibmdemo@icp4a]$ oc login

Authentication required for https://icp4a.pot.com:8443 (openshift)

Username: ocpadmin

Password:

Login successful.

You have access to the following projects and can switch between them with 'oc

project <projectname>':

 * default

 istio-system

 kabanero

 knative-eventing

 knative-serving

 knative-sources

 kube-public

 kube-service-catalog

 kube-system

 lab3

 lab4

 lab5

 management-infra

 openshift

 openshift-console

 openshift-infra

 openshift-logging

 openshift-metrics-server

 openshift-monitoring

 openshift-node

 openshift-node-problem-detector

 openshift-pipelines

 openshift-sdn

 openshift-web-console

 operator-lifecycle-manager

 ta

Using project "default".

IBM Software

Lab 06 – Application Modernization with Microservices Page 7

__6. Type oc new-project lab6 which will create a new project named lab5, and switch your

context to that project

__7. Enter cd ~/student/lab6 then type ls to go to the lab directory and list the contents.

There are two directories;

• pbwis – Contains the deployment artifacts for the PlantsByWebSphere Image
Service microservice

• pbwv2 – Contains the modified PlantsByWebSphere application which incorporates

a Servlet Filter to direct image access requests to the Image Service

__8. We’re going to deploy the microservice first so type cd pbwis then type ls

[ibmdemo@icp4a ~]$ oc new-project lab6

Now using project "lab6" on server "https://icp4a.pot.com:8443".

You can add applications to this project with the 'new-app' command. For

example, try:

 oc new-app centos/ruby-25-centos7~https://github.com/sclorg/ruby-ex.git

to build a new example application in Ruby.

[ibmdemo@icp4a ~]$

[ibmdemo@icp4a ~]$ cd ~/student/lab6

[ibmdemo@icp4a lab6]$ ls

pbwis pbwv2

[ibmdemo@icp4a lab6]$ cd pbwis

[ibmdemo@icp4a pbwis]$

[ibmdemo@icp4a pbwis]$ ls

01-builddocker.sh 04-deployApplication.sh operator

02-createSecret.sh 99-cleanUpLab6.sh src

03-createOperatorArtifacts.sh Dockerfile target

IBM Software

Page 8 IBM Cloud: Application Modernization

__9. Review the Dockerfile, using cat Dockerfile command.

When executed, the Dockerfile performs the following actions as it constructs the Docker image:

• Pulls the spwcified websphere-liberty docker image from dockerhub

• Copies the Liberty serverxml configuration file to the /config folder

• Copies the PlantsByWebSphere EAR to the /config/apps directory

• Copies the DB2 JDBC Driver to the /config/resources/DB2Libs directory

__10. Review the contents of the server.xml that is used to configure the Liberty server

 cat src/main/liberty/config/server.xml

IBM Software

Lab 06 – Application Modernization with Microservices Page 9

__a. Note the list of features listed. These are the only features used by the new image service
microservice. This is a subset of the full set of features required by the PlantsByWebSphere
monolith application.

__b. Review the JDBC resource configuration in the server.xml.

Things to note:

• The DB2 JDBC library is referenced from the directory location the Dockerfile placed it.

• The database connection information is pulled from environment variables. These
environment variables are created form a Kubernetes secret that you will create later
in the lab.

IBM Software

Page 10 IBM Cloud: Application Modernization

__11. Review the 01-builddocker.sh script by typing cat 01-builddocker.sh

As you can see this script does the following:

• builds the Docker image

• tags it for RHOSCP internal registry

• authenticates with the RHOCP registry

• pushes the image to the RHOSCP internal registry

IBM Software

Lab 06 – Application Modernization with Microservices Page 11

__12. Run the 01-builddocker.sh script by typing: ./01-builddocker.sh

[ibmdemo@icp4a pbwis]$./01-builddocker.sh

==

Build Liberty Docker image for pbwis

==

Sending build context to Docker daemon 7.064 MB

Step 1/8 : FROM docker.io/ibmcom/websphere-liberty:19.0.0.6-kernel-ubi-min

 ---> 4b96d9ab9f54

Step 2/8 : COPY src/main/liberty/config/server.xml /config/

 ---> 20ec58119710

Removing intermediate container 7654d2496dfa

Step 3/8 : COPY target/plantsbywebsphereimageservice.ear /config/apps/

 ---> 949cf902324f

Removing intermediate container b13f041ca7e8

Step 4/8 : COPY src/main/liberty/lib/DB2Libs/db2jcc4.jar

/config/resources/DB2Libs/

 ---> a9c8a20a0a43

Removing intermediate container cead85c753c3

Step 5/8 : USER root

 ---> Running in a851ffdfbf4a

 ---> 43210173d884

Removing intermediate container a851ffdfbf4a

Step 6/8 : RUN chown default:root -R /opt/ibm/wlp/usr/servers/

 ---> Running in 54b0af011592

 ---> 0b73be669497

Removing intermediate container 54b0af011592

Step 7/8 : USER 1001

 ---> Running in a8099919e061

 ---> 883578afeb4b

Removing intermediate container a8099919e061

Step 8/8 : RUN configure.sh

 ---> Running in b2b8a658c8c4

+ WLP_INSTALL_DIR=/opt/ibm/wlp

+ SHARED_CONFIG_DIR=/opt/ibm/wlp/usr/shared/config

+ SHARED_RESOURCE_DIR=/opt/ibm/wlp/usr/shared/resources

+ SNIPPETS_SOURCE=/opt/ibm/helpers/build/configuration_snippets

+ SNIPPETS_TARGET=/config/configDropins/overrides

+ mkdir -p /config/configDropins/overrides

+ '[' '' == true ']'

+ '[' '' == true ']'

+ '[' '' == true ']'

+ '[' '' == true ']'

+ '[' '' == true ']'

+ '[' '' == true ']'

+ '[' '' == true ']'

+ '[' '' == client ']'

+ '[' '' == embedded ']'

+ '[' '' == true ']'

+ '[' '' == true ']'

IBM Software

Page 12 IBM Cloud: Application Modernization

+ installUtility install --acceptLicense defaultServer

Checking for missing features required by the server ...

The server requires the following additional features: servlet-3.0

transportsecurity-1.0 beanvalidation-1.0 jndi-1.0 json-1.0 localconnector-1.0

jdbc-4.0 jaxrs-1.1 jpa-2.0. Installing features from the repository ...

Establishing a connection to the configured repositories ...

This process might take several minutes to complete.

Successfully connected to all configured repositories.

Preparing assets for installation. This process might take several minutes to

complete.

Additional Liberty features must be installed for this server.

To install the additional features, review and accept the feature license

agreement:

The --acceptLicense argument was found. This indicates that you have

accepted the terms of the license agreement.

Step 1 of 22: Downloading servlet-3.0 ...

Step 2 of 22: Installing servlet-3.0 ...

Step 3 of 22: Downloading ssl-1.0 ...

Step 4 of 22: Installing ssl-1.0 ...

Step 5 of 22: Downloading transportSecurity-1.0 ...

Step 6 of 22: Installing transportSecurity-1.0 ...

Step 7 of 22: Downloading beanValidation-1.0 ...

Step 8 of 22: Installing beanValidation-1.0 ...

Step 9 of 22: Downloading jndi-1.0 ...

Step 10 of 22: Installing jndi-1.0 ...

Step 11 of 22: Downloading json-1.0 ...

Step 12 of 22: Installing json-1.0 ...

Step 13 of 22: Downloading localConnector-1.0 ...

Step 14 of 22: Installing localConnector-1.0 ...

Step 15 of 22: Downloading jdbc-4.0 ...

Step 16 of 22: Installing jdbc-4.0 ...

Step 17 of 22: Downloading jaxrs-1.1 ...

Step 18 of 22: Installing jaxrs-1.1 ...

Step 19 of 22: Downloading jpa-2.0 ...

Step 20 of 22: Installing jpa-2.0 ...

Step 21 of 22: Validating installed fixes ...

Step 22 of 22: Cleaning up temporary files ...

All assets were successfully installed.

Start product validation...

Product validation completed successfully.

+ find /opt/ibm/fixes -type f -name '*.jar' -print0

+ sort -z

+ xargs -0 -n 1 -r -I '{}' java -jar '{}' --installLocation /opt/ibm/wlp

+ find /opt/ibm/wlp -perm -g=w -print0

+ xargs -0 -r chmod -R g+rw

+ /opt/ibm/wlp/bin/server start

Starting server defaultServer.

Server defaultServer started with process ID 112.

IBM Software

Lab 06 – Application Modernization with Microservices Page 13

Note: Several layers from the image may be used from WebSphere Liberty images that may
already exist on the file system in the lab environment. This is expected and OK.

+ /opt/ibm/wlp/bin/server stop

Stopping server defaultServer.

Server defaultServer stopped.

+ rm -rf /output/resources/security/ /output/messaging /logs/console.log

/logs/ffdc /logs/messages.log /logs/messages_20.04.27_20.20.48.0.log

/opt/ibm/wlp/output/.classCache

+ chmod -R g+rwx /opt/ibm/wlp/output/defaultServer

+ find /opt/ibm/wlp -type d -perm -g=x -print0

+ xargs -0 -r chmod -R g+rwx

 ---> a803ae3a35cc

Removing intermediate container b2b8a658c8c4

Successfully built a803ae3a35cc

==

Tag Liberty Docker image for pbwis

==

Login Succeeded

==

Push Liberty Docker image for pbwis

==

The push refers to a repository [docker-registry.default.svc:5000/lab6/pbwis]

1cb271121baf: Pushed

655834fb121c: Pushed

d630675ed863: Pushed

9acbf2e93749: Pushed

1392bf3629ed: Pushed

be36d206af93: Mounted from lab5/plantsbywebsphereee6

ba04059ad9a3: Mounted from lab5/plantsbywebsphereee6

71532d3a56e4: Mounted from lab5/plantsbywebsphereee6

790bcf471d32: Mounted from lab5/plantsbywebsphereee6

fe274995fb89: Mounted from lab5/plantsbywebsphereee6

9649117d0875: Mounted from lab5/plantsbywebsphereee6

9e19e22c9a42: Mounted from lab5/plantsbywebsphereee6

e9417d2583e6: Mounted from lab5/plantsbywebsphereee6

481324a7ba6d: Mounted from lab5/plantsbywebsphereee6

26429bebe019: Mounted from lab5/plantsbywebsphereee6

latest: digest:

sha256:1195de40a5454afad4cccc484ec370df316acfba09f43418fa02b614f375d54e size:

3466

IBM Software

Page 14 IBM Cloud: Application Modernization

__1. Type cat 02-createSecret.sh to review the script file.

The secret creates the credentials and address information for application access to the
DB2 database used by both the PlantsByWebSphere Image Service microservice and the
modified PlantsByWebSphere application

__13. Run the 02-createSecret.sh script by typing: ./02-createSecret.sh

[ibmdemo@icp4a pbwis]$./02-createSecret.sh

==

Create secrets for PBW database access

==

secret/db2-secret created

IBM Software

Lab 06 – Application Modernization with Microservices Page 15

__2. The 03-createOperatorArtifacts.sh script has been created to consolidate the creation of
the 3 custom resource definition (CRD’s) for the v0.3.0 Open Liberty operator, the required
ServiceAccount, Role, and RoleBinding Kubernetes resources for the Liberty Operator.

__a. Enter the command: gedit 03-createOperatorArtifacts.sh to edit the file.

Ensure the three lines shown below are UNCOMMENTED.

__b. Remove the # from the three lines if they are commented out (This will uncomment
them)

__c. Save and close the file

These commands create the Custom Resource Definitions (CRDs) for the Open Liberty
Operator which only needs to be performed once in a K8s/RHOCP cluster

We modified the CR and security files so that the names and labels specify
“plantsbywebsphereee6-operator” in order to create artifacts specific to this deployment

Using the following commands, you can review the CRD files which define all the operator
required resources:

cat operator/application/application-crd.yaml

cat operator/application/dumps-crd.yaml

cat operator/application/traces-crd.yaml

cat operator/deploy/role_binding.yaml

cat operator/deploy/role.yaml

cat operator/deploy/service_account.yaml

IBM Software

Page 16 IBM Cloud: Application Modernization

__14. Type ./03-createOperatorArtifacts.sh to run the script

__a. Then type oc get pods until the pbwis-operator pod is running

__15. Once the operator pod is running type: ./04-deployApplication.sh which will deploy the

application

__16. Type oc get pods until both the pbwis operator and the pbwis application are running and
ready

[ibmdemo@icp4a pbwis]$./03-createOperatorArtifacts.sh

==

create Liberty operator ServiceAccount, Role, and RoleBinding

===

serviceaccount/pbwis-operator created

role.rbac.authorization.k8s.io/pbwis-operator created

rolebinding.rbac.authorization.k8s.io/pbwis-operator created

==

deploy Liberty operator pod

===

deployment.apps/pbwis-operator created

===

Run command "oc get pods "

wait until the plantsbywebsphere image service operator pod is ready

before running next script

===

[ibmdemo@icp4a pbwis]$ oc get pods

NAME READY STATUS RESTARTS AGE

pbwis-operator-f8c5ddb8b-9rh6f 1/1 Running 0 24s

[ibmdemo@icp4a pbwis]$./04-deployApplication.sh

==

deploy the application

==

openlibertyapplication.openliberty.io/pbwis created

IBM Software

Lab 06 – Application Modernization with Microservices Page 17

__17. Type oc get all to ensure that the pbwis application pod is Ready 1/1 and Running and that the

additional artifacts such as the service/pbwis for accessing the microservice has been created

[ibmdemo@icp4a pbwis]$ oc get all

NAME READY STATUS RESTARTS AGE

pod/pbwis-7b45487c8d-skds9 1/1 Running 0 33s

pod/pbwis-operator-f8c5ddb8b-9rh6f 1/1 Running 0 10m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

service/pbwis ClusterIP 172.30.13.191 <none> 9080/TCP 33s

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE

AGE

deployment.apps/pbwis 1 1 1 1

33s

deployment.apps/pbwis-operator 1 1 1 1

10m

NAME DESIRED CURRENT READY AGE

replicaset.apps/pbwis-7b45487c8d 1 1 1 33s

replicaset.apps/pbwis-operator-f8c5ddb8b 1 1 1 10m

NAME DOCKER REPO

TAGS UPDATED

imagestream.image.openshift.io/pbwis docker-

registry.default.svc:5000/lab6/pbwis latest 9 days ago

NAME READY

REASON AGE

clusterchannelprovisioner.eventing.knative.dev/in-memory True

51d

clusterchannelprovisioner.eventing.knative.dev/in-memory-channel True

51d

NAME

READY REASON

clusteringress.networking.internal.knative.dev/route-17de13e9-fe3a-11e9-9829-

000c29ef9df2

IBM Software

Page 18 IBM Cloud: Application Modernization

__18. You can access the application using the ClusterIP

__a. Open the Chrome browser and using the ClusterIP

 URL: http://<cluster-ip>:port

 Example: http://172.30.13.191:9080

 NOTE that your Cluster-IP address will very likely be different

__19. Add /pbwis/resources/images/seeds_promo.gif to the URL in the browser,

Example: http://172.30.13.191:9080/pbwis/resources/images/seeds_promo.gif to test accessing a
static image

 Note substitute your Cluster-IP address

http://172.30.13.191:9080/
http://172.30.13.191:9080/pbwis/resources/images/seeds_promo.gif

IBM Software

Lab 06 – Application Modernization with Microservices Page 19

You only tested the image service rendering image from a file. Later in
the lab, you will also verify the new Image Service microservice render
images from the DB2 database.

At this point in the lab, you have not populated the database with the
images. That will happen later in the lab.

__20. Now that the image service is running, type cd ~/student/lab6/pbwv2 to switch to the directory

with the modified PlantsByWebSphere deployment artifacts, then type ls to list the files.

Note that aside from the omission of a script to create a secret for DB2, the artifacts and
layout is identical to the pbwis directory.

NOTE: There’s no need to create a secret for accessing DB2 from this project (namespace),
since that was accomplished several steps previously by running the 02-createSecret.sh
script for the image service

__21. Review the 01-buildDocker.sh script: cat 01-buildDocker.sh

As you can see, this script builds the Docker image, tags it, authenticates with the RHOCP registry,
then pushes the image to the RHOSCP image registry.

__22. Run the 01-buildDocker.sh script: ./01-buildDocker.sh

 Note: The expected output from the script is illustrated below:

[ibmdemo@icp4a pbwis]$ cd ~/student/lab6/pbwv2

[ibmdemo@icp4a pbwv2]$ ls

01-buildDocker.sh 04-deployApplication.sh Dockerfile src

03-createOperatorArtifacts.sh 99-cleanUp.sh operator target

IBM Software

Page 20 IBM Cloud: Application Modernization

[ibmdemo@icp4a pbwv2]$./01-buildDocker.sh

==

Build Liberty Docker image for plantsbywebsphereee6v2

==

Sending build context to Docker daemon 7.265 MB

Step 1/8 : FROM docker.io/ibmcom/websphere-liberty:19.0.0.6-kernel-ubi-min

 ---> 4b96d9ab9f54

Step 2/8 : COPY src/main/liberty/config/server.xml /config/

 ---> afbddcd23d43

Removing intermediate container 0693c4cda72d

Step 3/8 : COPY target/plantsbywebsphereee6v2.ear /config/apps/

 ---> bdb41924c704

Removing intermediate container 32e542a56fa9

Step 4/8 : COPY src/main/liberty/lib/DB2Libs/db2jcc4.jar

/config/resources/DB2Libs/

 ---> 2993baf28ace

Removing intermediate container a8c9fc73cec8

Step 5/8 : USER root

 ---> Running in 9dc14fcd3fa4

 ---> c200ba537d55

Removing intermediate container 9dc14fcd3fa4

Step 6/8 : RUN chown default:root -R /opt/ibm/wlp/usr/servers/

 ---> Running in daef2bb69cea

 ---> 59d86df3fb32

Removing intermediate container daef2bb69cea

Step 7/8 : USER 1001

 ---> Running in eb5a5e85d18a

 ---> d987747c860a

Removing intermediate container eb5a5e85d18a

Step 8/8 : RUN configure.sh

 ---> Running in 705039707a8b

+ WLP_INSTALL_DIR=/opt/ibm/wlp

+ SHARED_CONFIG_DIR=/opt/ibm/wlp/usr/shared/config

+ SHARED_RESOURCE_DIR=/opt/ibm/wlp/usr/shared/resources

+ SNIPPETS_SOURCE=/opt/ibm/helpers/build/configuration_snippets

+ SNIPPETS_TARGET=/config/configDropins/overrides

+ mkdir -p /config/configDropins/overrides

+ '[' '' == true ']'

+ '[' '' == true ']'

+ '[' '' == true ']'

+ '[' '' == true ']'

+ '[' '' == true ']'

+ '[' '' == true ']'

+ '[' '' == true ']'

+ '[' '' == client ']'

+ '[' '' == embedded ']'

+ '[' '' == true ']'

+ '[' '' == true ']'

+ installUtility install --acceptLicense defaultServer

Checking for missing features required by the server ...

The server requires the following additional features: jsp-2.3

transportsecurity-1.0 jsf-2.2 servlet-3.1 jndi-1.0 cdi-1.2 javamail-1.5

beanvalidation-1.1 ejblite-3.2 jpa-2.0. Installing features from the

repository ...

Establishing a connection to the configured repositories ...

This process might take several minutes to complete.

IBM Software

Lab 06 – Application Modernization with Microservices Page 21

Successfully connected to all configured repositories.

Preparing assets for installation. This process might take several minutes to

complete.

Additional Liberty features must be installed for this server.

To install the additional features, review and accept the feature license

agreement:

The --acceptLicense argument was found. This indicates that you have

accepted the terms of the license agreement.

Step 1 of 32: Downloading el-3.0 ...

Step 2 of 32: Installing el-3.0 ...

Step 3 of 32: Downloading servlet-3.1 ...

Step 4 of 32: Installing servlet-3.1 ...

Step 5 of 32: Downloading jsp-2.3 ...

Step 6 of 32: Installing jsp-2.3 ...

Step 7 of 32: Downloading ssl-1.0 ...

Step 8 of 32: Installing ssl-1.0 ...

Step 9 of 32: Downloading transportSecurity-1.0 ...

Step 10 of 32: Installing transportSecurity-1.0 ...

Step 11 of 32: Downloading jsf-2.2 ...

Step 12 of 32: Installing jsf-2.2 ...

Step 13 of 32: Downloading jndi-1.0 ...

Step 14 of 32: Installing jndi-1.0 ...

Step 15 of 32: Downloading cdi-1.2 ...

Step 16 of 32: Installing cdi-1.2 ...

Step 17 of 32: Downloading javaMail-1.5 ...

Step 18 of 32: Installing javaMail-1.5 ...

Step 19 of 32: Downloading beanValidation-1.1 ...

Step 20 of 32: Installing beanValidation-1.1 ...

Step 21 of 32: Downloading ejbLite-3.2 ...

Step 22 of 32: Installing ejbLite-3.2 ...

Step 23 of 32: Downloading servlet-3.0 ...

Step 24 of 32: Installing servlet-3.0 ...

Step 25 of 32: Downloading beanValidation-1.0 ...

Step 26 of 32: Installing beanValidation-1.0 ...

Step 27 of 32: Downloading jdbc-4.0 ...

Step 28 of 32: Installing jdbc-4.0 ...

Step 29 of 32: Downloading jpa-2.0 ...

Step 30 of 32: Installing jpa-2.0 ...

Step 31 of 32: Validating installed fixes ...

Step 32 of 32: Cleaning up temporary files ...

All assets were successfully installed.

Start product validation...

Product validation completed successfully.

+ find /opt/ibm/fixes -type f -name '*.jar' -print0

+ sort -z

+ xargs -0 -n 1 -r -I '{}' java -jar '{}' --installLocation /opt/ibm/wlp

+ find /opt/ibm/wlp -perm -g=w -print0

+ xargs -0 -r chmod -R g+rw

+ /opt/ibm/wlp/bin/server start

IBM Software

Page 22 IBM Cloud: Application Modernization

Note that several layers from the image create for the image service are reused, this because
both rely on the same underlying WebSphere Liberty image.

Starting server defaultServer.

Server defaultServer started with process ID 114.

+ /opt/ibm/wlp/bin/server stop

Stopping server defaultServer.

Server defaultServer stopped.

+ rm -rf /output/resources/security/ /output/messaging /logs/console.log

/logs/ffdc /logs/messages.log /logs/messages_20.05.07_23.38.14.0.log

/opt/ibm/wlp/output/.classCache

+ chmod -R g+rwx /opt/ibm/wlp/output/defaultServer

+ find /opt/ibm/wlp -type d -perm -g=x -print0

+ xargs -0 -r chmod -R g+rwx

 ---> 2bf2d7286547

Removing intermediate container 705039707a8b

Successfully built 2bf2d7286547

==

Tag Liberty Docker image for plantsbywebsphereee6v2

==

Login Succeeded

==

Push Liberty Docker image for plantsbywebsphereee6v2

==

The push refers to a repository [docker-

registry.default.svc:5000/lab6/plantsbywebsphereee6v2]

32144845d0e4: Pushed

a4d46fbb98ff: Pushed

6bca9750c253: Pushed

1d92d2c5de99: Pushed

06d3987fedcd: Pushed

be36d206af93: Mounted from lab6/pbwis

ba04059ad9a3: Mounted from lab6/pbwis

71532d3a56e4: Mounted from lab6/pbwis

790bcf471d32: Mounted from lab6/pbwis

fe274995fb89: Mounted from lab6/pbwis

9649117d0875: Mounted from lab6/pbwis

9e19e22c9a42: Mounted from lab6/pbwis

e9417d2583e6: Mounted from lab6/pbwis

481324a7ba6d: Mounted from lab6/pbwis

26429bebe019: Mounted from lab6/pbwis

latest: digest:

sha256:0ce467f37954c36e1afe97ea23956efee555bc3b6d6ae5204bf1fe3cebe79231 size:

3466

[ibmdemo@icp4a pbwv2]$

IBM Software

Lab 06 – Application Modernization with Microservices Page 23

__23. The 03-createOperatorArtifacts.sh script has been created to consolidate the creation of the 3
custom resource definition (CRD’s) for the v0.3.0 Open Liberty operator, the required
ServiceAccount, Role, and RoleBinding Kubernetes resources for the Liberty Operator.

These commands create the Custom Resource Definitions (CRDs) for the Open Liberty
Operator which only needs to be performed once in a K8s/RHOCP cluster

Note: We modified the CR and security files so that the names and labels specify
“plantsbywebsphereee6V2” in order to create artifacts specific to this deployment

Note: The “open-liberty-operator” has been replaced in multiple places with
“plantsbywebsphereee6v2” to create artifacts specific to deployment of this application.

__24. Type ./03-createOperatorArtifacts.sh to run the script, then type oc get pods until the

plantsbywebshereee6v2-operator pod is running

[ibmdemo@icp4a pbwv2]$./03-createOperatorArtifacts.sh

==

create Liberty operator ServiceAccount, Role, and RoleBinding

===

serviceaccount/plantsbywebsphereee6v2-operator created

role.rbac.authorization.k8s.io/plantsbywebsphereee6v2-operator created

rolebinding.rbac.authorization.k8s.io/plantsbywebsphereee6v2-operator created

==

deploy Liberty operator pod

===

deployment.apps/plantsbywebsphereee6v2-operator created

===

Run command "oc get pods "

wait until the plantsbywebsphere image service operator pod is ready

before running next script

===

[ibmdemo@icp4a pbwv2]$ oc get pods

NAME READY STATUS

RESTARTS AGE

pbwis-7b45487c8d-ms2k9 1/1 Running 0

17m

pbwis-operator-f8c5ddb8b-84vzl 1/1 Running 0

17m

plantsbywebsphereee6v2-operator-5c97784776-wjt9k 1/1 Running 0

6s

IBM Software

Page 24 IBM Cloud: Application Modernization

__25. Review the application-cr used for this lab by typing:

cat operator/application/application-cr.yaml

• The file creates an OpenLibertyApplication instance named
plantsbywebsphereee6v2.

• It used the docker image in the RHOSCP registry, specified by the
applicationImage.

• It created a readinessProbe and a livenessProbe to monitor the application.

• A route is created to expose the application for external access

• environmental variables (envFrom) are imported for use by the application

from a secret(db2-secret) (which contains database information and credentials)

IBM Software

Lab 06 – Application Modernization with Microservices Page 25

__26. Once the operator pod is running type ./04-deployApplication.sh which will deploy the

application using the parameters specified in the application-cr.yaml (from step 25 above)

__27. Type oc get pods until both the plantsbywebsphereee6v2 and the

plantsbywebsphereee6v2-operator pods are running and ready

[ibmdemo@icp4a pbwv2]$./04-deployApplication.sh

==

deploy the application

==

openlibertyapplication.openliberty.io/plantsbywebsphereee6v2 created

IBM Software

Page 26 IBM Cloud: Application Modernization

__28. Type oc get all to ensure that the application pod is running and the additional artifacts such as

the service for accessing the application has been created

[ibmdemo@icp4a pbwv2]$ oc get all

NAME READY STATUS

RESTARTS AGE

pod/pbwis-7b45487c8d-ms2k9 1/1 Running 0

17m

pod/pbwis-operator-f8c5ddb8b-84vzl 1/1 Running 0

17m

pod/plantsbywebsphereee6v2-7b9f65d5dc-fx74w 1/1 Running 0

18s

pod/plantsbywebsphereee6v2-operator-5c97784776-wjt9k 1/1 Running 0

53s

NAME TYPE CLUSTER-IP EXTERNAL-IP

PORT(S) AGE

service/pbwis ClusterIP 172.30.13.191 <none>

9080/TCP 17m

service/plantsbywebsphereee6v2 ClusterIP 172.30.58.200 <none>

9080/TCP 18s

NAME DESIRED CURRENT UP-TO-

DATE AVAILABLE AGE

deployment.apps/pbwis 1 1 1

1 17m

deployment.apps/pbwis-operator 1 1 1

1 17m

deployment.apps/plantsbywebsphereee6v2 1 1 1

1 18s

deployment.apps/plantsbywebsphereee6v2-operator 1 1 1

1 53s

NAME DESIRED CURRENT

READY AGE

replicaset.apps/pbwis-7b45487c8d 1 1

1 17m

replicaset.apps/pbwis-operator-f8c5ddb8b 1 1

1 17m

replicaset.apps/plantsbywebsphereee6v2-7b9f65d5dc 1 1

1 18s

replicaset.apps/plantsbywebsphereee6v2-operator-5c97784776 1 1

1 53s

NAME DOCKER REPO

TAGS UPDATED

imagestream.image.openshift.io/pbwis docker-

registry.default.svc:5000/lab6/pbwis latest 10 days ago

imagestream.image.openshift.io/plantsbywebsphereee6v2 docker-

registry.default.svc:5000/lab6/plantsbywebsphereee6v2 latest 17 hours ago

NAME HOST/PORT

PATH SERVICES PORT TERMINATION WILDCARD

route.route.openshift.io/plantsbywebsphereee6v2 plantsbywebsphereee6v2-

lab6.apps.icp4a.pot.com plantsbywebsphereee6v2 9080-tcp

None

NAME READY

REASON AGE

clusterchannelprovisioner.eventing.knative.dev/in-memory True

53d

clusterchannelprovisioner.eventing.knative.dev/in-memory-channel True

53d

IBM Software

Lab 06 – Application Modernization with Microservices Page 27

__29. Access the PlantsByWebSphere version 2 application using the rote that was created.

For the plantsbywebsphereee6v2 there is a route that has been created to access the application.

The route was configured in the application.cr file with the addition of the “expose: true“ key value
pair. A route allows for external access to the application.

Use the PATH; plantsbywebsphereee6v2-lab6.apps.icp4a.pot.com to construct the following URL in
a browser http://plantsbywebsphereee6v2-lab6.apps.icp4a.pot.com/PlantsByWebSphere

NAME DOCKER REPO

TAGS UPDATED

imagestream.image.openshift.io/pbwis docker-

registry.default.svc:5000/lab6/pbwis latest 1 hour ago

imagestream.image.openshift.io/plantsbywebsphereee6v2 docker-

registry.default.svc:5000/lab6/plantsbywebsphereee6v2 latest 17 mins ago

NAME HOST/PORT

PATH SERVICES PORT TERMINATION WILDCARD

route.route.openshift.io/plantsbywebsphereee6v2 plantsbywebsphereee6v2-

lab6.apps.icp4a.pot.com plantsbywebsphereee6v2 9080-tcp

None

NAME READY

REASON AGE

clusterchannelprovisioner.eventing.knative.dev/in-memory True

53d

clusterchannelprovisioner.eventing.knative.dev/in-memory-channel True

53d

NAME

READY REASON

clusteringress.networking.internal.knative.dev/route-17de13e9-fe3a-11e9-9829-

000c29ef9df2 True

[ibmdemo@icp4a pbwv2]$

http://plantsbywebsphereee6v2-lab6.apps.icp4a.pot.com/PlantsByWebSphere

IBM Software

Page 28 IBM Cloud: Application Modernization

__30. Now, use the application to populate the DB2 database used by the application.

__a. Click on Help in the upper right-hand corner of the Plants By WebSphere page

__b. Click on Reset database which will populate the database tables, which is required

before navigating through the application.

IBM Software

Lab 06 – Application Modernization with Microservices Page 29

__31. Navigate to the Flowers tab, to view the images of flowers in the catalog.

__32. If the application and the new Image Service microservice is working properly, you will see the list
of flowers and their images, as quried from the database via the image service microservice.

IBM Software

Page 30 IBM Cloud: Application Modernization

__33. If you would like further evidence that the images are being accessed from image service, you can
enter the following commands, which will delete the pbwis Image service microservice.

oc delete deployment.apps/pbwis-operator

oc delete deployment.apps/plantsbywebsphereee6v2-operator

oc delete deployment.apps/pbwis

__34. The enter oc get pods until the only pod running is the plantsbywebsphereee6v2 pod.

__35. Close all open browsers, then re-open the browser and click the control icon (three vertical dots)

and click on New incognito window (this to ensure that content is not cached)

[ibmdemo@icp4a pbwv2]$ oc delete deployment.apps/pbwis-operator

deployment.apps "pbwis-operator" deleted

[ibmdemo@icp4a pbwv2]$ oc delete deployment.apps/plantsbywebsphereee6v2-

operator

deployment.apps "plantsbywebsphereee6v2-operator" deleted

[ibmdemo@icp4a pbwv2]$ oc delete deployment.apps/pbwis

deployment.apps "pbwis" deleted

IBM Software

Lab 06 – Application Modernization with Microservices Page 31

__36. Enter the following URL in a incognito browser window: http://plantsbywebsphereee6v2-
lab6.apps.icp4a.pot.com/PlantsByWebSphere

__a. Notice that the images are missing from the page

__37. To redeploy the image service, enter the following commands from a shell open in
/home/ibmdemo/student/lab6/pbwv2 directory.

cd ~/student/lab6/pbwis

./03-createOperatorArtifacts.sh

./04-deployApplication.sh

[ibmdemo@icp4a pbwv2] cd ~/student/lab6/pbwis

[ibmdemo@icp4a pbwis]$./03-createOperatorArtifacts.sh

==

create Liberty operator ServiceAccount, Role, and RoleBinding

===

serviceaccount/pbwis-operator unchanged

role.rbac.authorization.k8s.io/pbwis-operator configured

rolebinding.rbac.authorization.k8s.io/pbwis-operator unchanged

==

deploy Liberty operator pod

===

deployment.apps/pbwis-operator created

===

Run command "oc get pods "

wait until the plantsbywebsphere image service operator pod is ready

before running next script

===

[ibmdemo@icp4a pbwis]$./04-deployApplication.sh

==

deploy the application

==

openlibertyapplication.openliberty.io/pbwis configured

http://plantsbywebsphereee6v2-lab6.apps.icp4a.pot.com/PlantsByWebSphere
http://plantsbywebsphereee6v2-lab6.apps.icp4a.pot.com/PlantsByWebSphere

IBM Software

Page 32 IBM Cloud: Application Modernization

__38. Enter oc get pods until the pbis pod is running and ready

__39. Enter the following URL in a incognito browser window http://plantsbywebsphereee6v2-
lab6.apps.icp4a.pot.com/PlantsByWebSphere

__a. The images are once again being displayed since the image service is back on-line.

6.4 Conclusion

Congratulations you have completed the lab and started your journey from monolithic applications to
microservices.

End of Lab 06: Application Modernization with Microservices

http://plantsbywebsphereee6v2-lab6.apps.icp4a.pot.com/PlantsByWebSphere
http://plantsbywebsphereee6v2-lab6.apps.icp4a.pot.com/PlantsByWebSphere

IBM Software

Lab 06 – Application Modernization with Microservices Page 33

Appendix 1 – Servlet Filter

package com.ibm.websphere.samples.pbw.war;

import java.io.IOException;
import javax.servlet.Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
//* add the following
import javax.servlet.http.HttpServletRequest;
import javax.servlet.ServletResponse;
//* add the following
import javax.servlet.http.HttpServletResponse ;
//import javax.servlet.annotation.WebFilter;
import javax.servlet.annotation.*;

/**
 * Servlet Filter implementation class RedirectFilter
 */

@WebFilter(filterName="RedirectFilter",
 servletNames={"com.ibm.websphere.samples.pbw.war.ImageServlet", "FacesServlet"},
 urlPatterns="*")

 public class RedirectFilter implements Filter {

 // Read the Kubernetes service environment variables for the Image Service and
 // construct the Image Service service endpoint
 String httpPre = "http://" ;
 String colon = ":" ;
 String pbwisIp = System.getenv("PBWIS_SERVICE_HOST") ;
 String pbwisPort = System.getenv("PBWIS_SERVICE_PORT") ;
 String pbwisUrl = "/pbwis" ;
 String serviceEndpoint = httpPre+pbwisIp+colon+pbwisPort+pbwisUrl;

@Override
 public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain)
throws IOException, ServletException {

 if(response.isCommitted() || (serviceEndpoint == null)) {
 //can't do anything as the response has already been committed
 chain.doFilter(request, response);
 return;
 }
 HttpServletResponse resp = (HttpServletResponse) response;
 HttpServletRequest req = (HttpServletRequest) request;
 if("ln=images".equals(req.getQueryString())) {
 String path = req.getServletPath();
 if(path.endsWith(".jsf")) {
 String resource = path.substring(path.lastIndexOf('/'), path.lastIndexOf('.'));
 // resp.sendRedirect(serviceEndpoint + "/images/resources" + resource);
 resp.sendRedirect(serviceEndpoint + "/resources/images" + resource);
 return;
 }

IBM Software

Page 34 IBM Cloud: Application Modernization

 }
 if(req.getServletPath().endsWith("/ImageServlet")) {
 // resp.sendRedirect(serviceEndpoint + "/images/product/inventory/" +
req.getParameterMap().get("inventoryID")[0]);
 resp.sendRedirect(serviceEndpoint + "/product/inventory/" +
req.getParameterMap().get("inventoryID")[0]);
 return;
 }
 chain.doFilter(request, response);
 }

public void init(FilterConfig fConfig) throws ServletException {
 // TODO Auto-generated method stub
}

public void destroy() {
 // TODO Auto-generated method stub
}
}

IBM Software

Lab 06 – Application Modernization with Microservices Page 35

Appendix 2 – Image Service Implementation

// Enables JAX-RS
package com.ibm.websphere.samples.pbw.ms.image;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/product/*")

public class ImageApplication extends Application
{

}

// ImageService REST endpoint for the monolith to access the image service

package com.ibm.websphere.samples.pbw.ms.image;

import java.io.IOException;
import java.io.OutputStream;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.persistence.EntityManager;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.WebApplicationException;
import javax.ws.rs.core.Response;
import javax.ws.rs.core.Response.ResponseBuilder;
import javax.ws.rs.core.Response.Status;
import javax.ws.rs.core.StreamingOutput;

@Path("/inventory")
public class ImageService {

 private EntityManager getEntityManager() {
 try {
 Context ctx = new InitialContext();
 return (EntityManager)ctx.lookup("java:comp/env/images/em");
 } catch (NamingException e) {
 }
 return null;
 }

@GET
@Produces({"image/jpeg"})
@Path("{inventoryID}"
public Response getMessage(@PathParam("inventoryID") String inventoryID) {
 Inventory inv = getInv(inventoryID);
 if (inv != null) {
 final byte[] retval = inv.getImgbytes();
 StreamingOutput stream = new StreamingOutput() {

IBM Software

Page 36 IBM Cloud: Application Modernization

 public void write(OutputStream output) throws IOException,
WebApplicationException {
 output.write(retval);
 }
 };
 return Response.ok(stream).build();
 }
 return Response.status(Response.Status.NOT_FOUND).build();
 }
private Inventory getInv(String inventoryID) {
 EntityManager em = getEntityManager();
 if (em == null) {
 return null;
 }
 return (Inventory)em.find(Inventory.class, inventoryID);
 }
}

IBM Software

Lab 06 – Application Modernization with Microservices Page 37

Appendix: SkyTap Tips for labs

6.5 How to use Copy / Paste between local desktop and Skytap VM

Using copy / Paste capabilities between the lab document (PDF) on your local workstation to the VM is a
good approach to more efficiently work through a lab, while reducing the typing errors that often occur
when manually entering data.

__1. In SkyTap, you will find that any text copied to the clipboard on your local workstation is not available to be
pasted into the VM on SkyTap. So how can you easily accomplish this?

__a. First copy the text you intend to paste, from the lab document, to the clipboard on your local

workstation, as you always have (CTRL-C)

__b. Return to the SkyTap environment and click on the Clipboard at the top of the SkyTap session

window.

__c. Use CTRL-V to paste the content into the Copy/paste VM clipboard. Or use the paste menu item that

is available in the dialog, when you right mouse click in the clipboard text area.

__d. Once the text is pasted, just navigate away to the VM window where you want to paste the content.

Then, use CTRL-C, or right mouse click & us the paste menu item to paste the content.

IBM Software

Page 38 IBM Cloud: Application Modernization

__e. The text is pasted into the VM

Note: The very first time you do this, if the text does not paste, you may have to paste the contents into the Skytap
clipboard twice. This is a known Skytap issue. It only happens on the 1st attempt to copy / paste into Skytap.

