
Improve your customer experience by reacting to situations in real
time
The most interesting and impactful new applications in an enterprise
are the applications that provide new ways of interacting with existing
systems by reacting in real time to mission-critical data. Leverage your
existing investments, skills and even existing data, and use event-
driven techniques to offer more-responsive and more-personalized
experiences. IBM Event Streams has supported connectivity to the
systems you’re already using. By combining the capabilities of IBM
Event Streams event streams and message queues, you can combine
your transaction data with real time events to create applications and
processes. These applications and processes will allow you to react
to situations quickly and provide a greater personalized experience.

In this tutorial, you create a bidirectional connection between MQ and
Event Streams by creating two message queues and two event stream
topics. One is for sending and one for receiving. You then configure the
message queue source and sync connectors to connect between the
two instances.

In this tutorial, you will explore the following key capabilities:
• Configure MQ to send and receive messages and events
• Configure Event Streams topics
• Configure MQ Source and Sync Connectors.
• Test connectors MQ source and sink (send a message and receive

events).
Task 1- Start the environment
Because this is a new deployment of the Cloud Pak for Integration that
uses Red Hat OpenShift, you need to execute some steps to prepare
the environment. Initial setup steps are only needed for a fresh
installation of the Cloud Pak. They do not need to be repeated.
All work for this lab is done on the desktop Machine. Open the desktop
machine virtual machine by clicking the tile.
Start the Environment

1. When you open your reservation link, the environment should be up and
running already and you can skip to step 3. If it is not running, proceed to
Step 2.

2. Click the run button as shown below to start the virtual machine
environment that is used for this lab.

3. When the virtual machine starts, click the Desktop Machine screen
image to start your lab exercise.

4. When the virtual machine starts, click the desktop Machine screen

image to start your lab exercise.
5. Log in to the Linux desktop with userid: ibmuser and password:

"engageibm".
Task 2 – Configuring MQ

In this task, you work with MQ Console, create two queues
(MQTOEVENT and FROMEVENT),

1. In your browser, click the IBM Cloud Platform Navigator bookmark.You
might need to log in to IBM Cloud Pak. The username and Password are
already cached. Click Log in.

2. In the welcome to IBM Cloud Pak for Integration page, click View
Instances and on the Cloud Pak for Integration, locate the MQ service
and click mq-1.

3. Firefox warns you about a potential security risk.
Click Advanced then accept the risk and Continue.

4. Since this is the first time to open the mq-1 instance you might need to
log in. Click Log in.

5. The IBM MQ console opens and you see the queue manager mq running.
Click Add Widget then click Queue to display the queues.

6. Click Create (+) and enter the name MQTOEVENT. Accept the default
queue type as Local and click Create.

Note: MQTOEVENT – This queue is the source for the IBM MQ
source connector.

7. Repeat the process to add a queue EVENTTOMQ
Note: EVENTTOMQ – This queue is the source for the IBM MQ sink
connector.

8. Click Add widget again and select Channels.
Note: Notice that is already a predefined channel DEF.SVRCONN of
type server-connection that has been preconfigured for connecting
MQ clients to the MQ queue manager mq.

Task 3 – Configuring Event Streams
For this lab you will be running Kafka Connect in stand-alone mode.
When running in stand-alone mode, Kafka Connect uses a local file

for store configuration, current offsets, and status. Now that you are
familiar with topics and creating them from the previous labs, you
need to create two new topics for running the MQ source and sink
connector.

1. Open a browser and click IBM Cloud Pak Platform Navigator. Select View
instances and click es-1.

2. In the Event Streams UI, click the Topics icon on the menu bar.

3. Click Create topic. Turn Show all available options to On.
Enter mqtoevent for the topic name.
Use the following values when creating the topics. Create the following
topics: Use the following values when creating the topics.

1. Topic Name field, type: mqtoevent
2. Partitions: 1 (A partition is an ordered list of messages)
3. Replicas: 3 (To improve availability, each topic can be replicated onto

multiple brokers)
4. Minimum in-sync replicas: 2 - (To improve availability, each topic can be

replicated onto multiple brokers)
5. Retention time: 10 minutes - (It Is time messages are retained before

being deleted.)
6. Click Create topic .

4. Repeat step 3, and create a topic eventtomq.

Note: When all available options are On you see a great amount of
detail for each topic. You only need to edit the Core configuration
section. If you turn the switch to Off you need to click Next three times
before the final pane where you click Create topic .

Task 4 - Create API Key and Event Streams certificate (Event Streams
Operations)
You need some security parameters to execute Kafka Connectors.

1. In your browser, click the IBM Cloud Pak for Integration Bookmark and
open es-1 in Event Streams window. Click the Topics link and click
the Connect to this cluster link .

2. In the Cluster connection page, you see Event Streams connection
information.

1. Bootstrap server is used to connect an application or tool to this cluster.
2. API Key is to connect with permission to access the cluster and resources

such as topics.
3. Certificates are required by the Kafka clients to connect securely to this

cluster.
3. Save the Bootstrap server in a file.
1. Right-click the desktop workspace and open a terminal window
2. Create a file using any editor, for example gedit creds.txt and copy es-1-

ibm-es-proxy-route-bootstrap-
eventstreams.apps.demo.ibmdte.net:443 the bootstrap server.

3. Click Generate API Key to create a permission to access the topic.

4. In the Generate an API key for your application, Enter mqeventapp

as Name your application.
1. Check Produce, consume, create topics and schemas box and then

click Next.

2. Turn on the All topics button and click Next.

3. Click Generate API Key .

5. Event Streams generates an API Key. You can save or download as JSON.
Click Download as a JSON link. Close the API Key window.

6. In the Certificates, download the truststore certificate. Locate Java
truststore, click the download icon and save.

7. Many times during this lab, you need to open a terminal window. Click
the right mouse on the workspace and click Open terminal.

8. Go to /home/ibmuser/Downloads directory: es-cert.jks and es-api-
key.json. and copy or move both files to /home/ibmuser/esconfig.

Within the /home/ibmuser/esconfig directory execute the following
commands to move:
mv /home/ibmuser/Downloads/es-cert.jks .
mv /home/ibmuser/Downloads/es-api-key.json .
Task 5 – Configuring Kafka MQ connectors (source and sink)
Kafka connector can be implemented as: a docker application,
Kubernetes or Stand-alone. Kafka Connect connectors that run inside
a Java process called a worker. These instructions focus on stand-
alone mode. You use a Kafka connector stand-alone JAR file (already
installed for this lab).The connectors (sink and source) configuration
file contain the properties that are needed for each connector. For this
lab, you need to configure MQ Kafka Connectors.
Source connector: https://github.com/ibm-messaging/kafka-connect-
mq-source/tree/master/…

Sink connector: https://github.com/ibm-messaging/kafka-connect-
mq-sink/tree/master/co…
The MQ source connector copies messages from a source MQ queue
to a target Kafka topic. There is also an MQ sink connector that takes
messages from a Kafka topic and transfers them to an MQ queue. You
installed in desktop Machine a local Kafka. You do not need to update
the connector config file (mq-source.properties and mq-
sink.properties) for the value that is required to connect to your queue
manager

1. To configure MQ connectors (source and sink), you need to get MQ
hostname. Open a terminal window. Enter OpenShift command to work
with MQ namespace: oc project mq. Enter the command to identify the
MQ hostname, enter oc get route. Copy the address.

2. Configure mq-source.properties (MQ to Event Streams). Open a terminal
window and go to /home/ibmuser/kafka_standalone/ directory and edit
mq-source.properties. You can use gedit mq-source.properties and check
the values as follows.

1. mq.queue.manager=mq
2. mq.connection.name.list= mq-1-ibm-mq-qm-

mq.apps.demo.ibmdte.net(443)

3. mq.channel.name=DEF.SVRCONN
4. mq.queue=MQTOEVENT
5. topic=mqtoevent
6. mq.ssl.cipher.suite=TLS_RSA_WITH_AES_256_CBC_SHA256
7. mq.ssl.truststore.location=/home/ibmuser/esconfig/mqkey.jks (we

generated the key mqkey.jks – using keytool) – You can learn how to
create this key, visit this
link: https://developer.ibm.com/integration/blog/2020/02/28/connectin
g-to-a-q….

8. mq.ssl.truststore.password=passw0rd
9. mq.ssl.use.ibm.cipher.mappings=false
10. Close the source file.

3. To configure mq-sink, use as the same you configure mq-source. Open a
terminal window and go to /home/ibmuser/kafka_standalone/ directory
and edit mq-source.properties, you can use gedit mq-sink.properties and
check the values as follows:

1. topics=eventtomq
2. mq.queue.manager=mq

3. mq.connection.name.list= mq-1-ibm-mq-qm-
mq.apps.demo.ibmdte.net(443)

4. mq.channel.name=DEF.SVRCONN
5. mq.queue=EVENTTOMQ
6. mq.ssl.cipher.suite=TLS_RSA_WITH_AES_256_CBC_SHA256
7. mq.ssl.truststore.location=/home/ibmuser/esconfig/mqkey.jks
8. mq.ssl.truststore.password=passw0rd
9. mq.ssl.use.ibm.cipher.mappings=false
10. Close the sink file .

Task 6 – Configuring the Connectors
Download Kafka.
You need the Kafka environment to run the MQ connectors in stand-
alone mode. This can be downloaded from the Kafka project, but it has
already been downloaded onto this image. It is stored in
/home/ibmuser/esconfig/kafka_2.13-2.5.0.tgz.
Copy kafka_2.13-2.5.0.tgz to /home/ibmuser directory and enter tar -
xvf kafka_2.13-2.5.0.tgz. The installation creates several directories
including bin for the Kafka executables and config for the configuration

files. You can download the latest version of Kafka server from this
download: http://kafka.apache.org/downloads
Note:
Within the /home/ibmuser/ directory execute the following
commands:
mv /home/ibmuser/esconfig/kafka_2.13-2.5.0.tgz

1. Make sure that es-cert.jks and es-api-key.json are in
/home/ibmuser/esconfig directory

2. Configure connect-standalone-source.properties. From the terminal
window, edit (use gedit) /home/ibmuser/esconfig/connect-standalone-
source.properties.There are two sessions that are necessary to configure
in security and producer.

3. The first session is to configure security parameters (Verify):
1. bootstrap.servers: es-1-ibm-es-proxy-route-bootstrap-

eventstreams.apps.demo.ibmdte.net:443 (You saved in a file as cred.txt)
2. Verify the ssl.truststore.location=/home/ibmuser/esconfig/es-cert.jks
3. You need to type API Key password (edit /home/ibmuser/esconfig/es-

api-key.json and copy the API Key). Type or Paste as password the API
Key as
sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginMod
ule required username="token"
password="DmX61HgwCu62s96NvkqhX8L_bLxZgrjEQvwFqBWb50QL";

The second session is to configure producer parameters (Verify):

4. Verify the producer.ssl.truststore.location=/home/ibmuser/esconfig/es-
cert.jksPaste as password the API Key as producer.sasl.jaas.c
onfig=org.apache.kafka.common.security.plain.PlainLoginModule
required username="token" password="
DmX61HgwCu62s96NvkqhX8L_bLxZgrjEQvwFqBWb50QL " .

5. As you run two connectors source and sink, it is necessary to change
rest.port to 8084.

6. Click Save to save the file and then close it.

4. Configure connect-standalone-sink.properties : (similar as producer
configuration).

5. There are two sessions that are necessary to configure
in security and producer.

6. The first session that you configure is the security:
1. bootstrap.servers: es-1-ibm-es-proxy-route-bootstrap-

eventstreams.apps.demo.ibmdte.net:443 (You saved in a file as cred.txt).
2. Verify the ssl.truststore.location=/home/ibmuser/esconfig/es-cert.jks
3. Paste as password the API Key as

sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginMod
ule required username="token"
password="DmX61HgwCu62s96NvkqhX8L_bLxZgrjEQvwFqBWb50QL";

The second session is to configure consumer parameters (Verify or
enter):

4. Verify the producer.ssl.truststore.location=/home/ibmuser/esconfig/es-
cert.jks

5. Type or Paste as password the API Key as consumer.sasl.jaas.c
onfig=org.apache.kafka.common.security.plain.PlainLoginModule

required username="token" password="
DmX61HgwCu62s96NvkqhX8L_bLxZgrjEQvwFqBWb50QL "

6. Click Save to save the file and then close it

Task 7 – Executing and Testing MQ Connectors
To use an existing Kafka cluster, specify the connection information in
the connector configuration file.

1. Open a terminal window.
1. Copy /home/ibmuser/esconfig/connect-standalone-source.properties to

/home/ibmuser/kafka_2.13-2.5.0/config.
2. Copy /home/ibmuser/esconfig/connect-standalone-sink.properties to

/home/ibmuser/kafka_2.13-2.5.0/config.
3. Copy two shell scripts: event2mq.sh and mq2event.sh from

/home/ibmuser/esconfig/ to /home/ibmuser/kafka_2.13-2.5.0/ .
4. To start the source connector in the terminal window and go to

/home/ibmuser/kafka_2.13-2.5.0 and
enter ./mq2event.sh or CLASSPATH=/home/ibmuser/kafka-connect-mq-
source-1.3.0-jar-with-dependencies.jar bin/connect-standalone.sh
config/connect-standalone-source.properties
/home/ibmuser/kafka_standalone/mq-source.properties .

5. Check the log.
2. Go to the mq-1 instance and open MQ console, locate Queues on

mq. select MQTOEVENT queue and click Put message.

3. Type a message (suggestion: This is a message from MQ to Event
Streams) on Message and click Put. Notice that there is no message on
the MQTOEVENT queue. As soon as you put a message, immediately the
connector sends it to Event Streams.

4. Return to the Event Streams main page and click Topics. Click the
topic mqtovent and to see the topic mqtovent messages.

5. You can view the time frame of data to display (Hours). You can change it
to Days, Hours, Minutes and Seconds. Click the message.

6. You see the message that you sent from MQ to Event Streams.

7. Keep the source connector running. Open a new terminal window and go
to /home/ibmuser/kafka_2.11-2.5.0 and type: ./event2mq.sh or
CLASSPATH=/home/ibmuser/kafka-connect-mq-sink-1.3.0-jar-with-

dependencies.jar bin/connect-standalone.sh config/connect-standalone-
sink.properties /home/ibmuser/kafka_standalone/mq-sink.properties .

1. Check the log.
8. In order to send events, use a file (you can find it on

/home/ibmuser/esconfig/file_example_XLS_50.csv) to simulate events
from Event Streams to MQ.

9. To send the lines of this file, you use producer.jar . Open a terminal
window and go to /home/ibmuser/esconfig directory and edit
producer.config (use gedit producer.config) and enter or verify the
parameters.

1. Verify Bootstrap server: es-1-ibm-es-proxy-route-bootstrap-
eventstreams.apps.demo.ibmdte.net:443

2. Verify ssl.truststore.location: /home/ibmuser/esconfig/es-cert.jks
3. Enter password (It is the es-api-key.json that you use in connect-

standalone-sink-
properties). sasl.jaas.config=org.apache.kafka.common.security.plain.Pla
inLoginModule required username="token"
password="DmX61HgwCu62s96NvkqhX8L_bLxZgrjEQvwFqBWb50QL"

4. Save and close the file.

Now, you send messages to MQ. Use a Java application(es-
producer.jar) to produce Events from Event Streams to MQ (you send

50 events).

10. In this terminal go to directory /home/ibmuser/esconfig/ and
type ./loadevent.sh or java -jar es-producer.jar -t eventtomq -T 1000 -n
50 -f /home/ibmuser/esconfig/file_example_XLS_50.csv. Have a look at
the log and see the results:

11. Open eventtomq topic in Event Streams topics.

12. Open Message and see the list of events that you sent. Click one
of messages and check the payload.

13. Select one message and see the message.

14. Go to MQ Console, click the Refresh icon and check the Queue
Depth. You see 50 messages arrived in EVENTTOMQ queue.

15. Select EVENTTOMQ and click Browse messages.

16. A pop-up window check the messages from Event Streams.

Summary
You've successfully completed the tutorial. You were able to add a
layer of secure, reliable, event-driven, and real time data which can be
re-used across applications in your enterprise. You learned how to:

• Configure message queues
• Create event streams topics
• Configure message queue connectors (sink and source)
• Execute a test run of the flow and view the data

To try out more labs, go to Cloud Pak for Integration Demos. For more
information about the Cloud Pak for Integration, go
to https://www.ibm.com/cloud/cloud-pak-for-integration.

