

MQ Uniform Clusters
Messaging Developer Messaging Administrator

Summary: Uniform Cluster

MQ Uniform Clusters and Application
Rebalancing
Featuring:

Creating a Uniform Cluster

Application Rebalancing

Application Rebalancing & Queue Manager Outage

Metrics

Using CCDT Queue Manager Groups

Introduction
This lab introduces MQ Uniform Clusters and Application Rebalancing at the MQ 9.1.5 code level (and in
the MQ 9.2 Long Term Support release). In this lab, you will:

Create a Uniform Cluster quickly using configuration files, a feature introduced in MQ 9.1.4

Run re-connectable sample applications to a queue manager, within the Uniform Cluster, to show
automatic rebalancing of the apps to other queue managers in the Uniform Cluster

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

1 of 32 7/30/20, 6:47 AM

Stop, then restart a queue manager, with connected apps to show automatic application rebalancing
to remaining running queue managers in the Uniform Cluster

Report resource usage metrics for the applications, introduced in MQ 9.1.5

Connect an application to a Queue Manager Group instead of a queue manager

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

2 of 32 7/30/20, 6:47 AM

Further information
IBM MQ Knowledge Center

“Building scalable fault tolerant systems with IBM MQ 9.1.2 CD” article by David Ware, STSM, Chief
Architect, IBM MQ: David Ware article !

“Active/active IBM MQ with Uniform Clusters” video by David Ware: YouTube Demo Video !

Acknowledgements
The technical content of this document is based on materials originally provided by Lewis Weedon,
Laurence Bonney, Jason Edmeades and Ian Edwards from IBM MQ Development.

The illustration of application balancing is taken from the aforementioned article by David Ware.

Lab Environment
To develop this lab guide, we used a single MQ 9.2.0.0 installation running on Windows 10.

A Windows user account – ibmdemo – has been created. This has been added to the Administrators and
mqm groups. The password for ibmdemo is passw0rd.

Entering commands for this lab
In this lab, you will come across some long commands to enter. To avoid a lot of typing, it may be quicker
to copy the commands from this document to a Notepad window, then edit and format them there, before
copying and pasting them to the Windows Command Prompt.

Some points to consider:

There may be hyphens (-) introduced in this document where text is split between lines; you should
remove these

Commands may occupy multiple lines in this document; you should concatenate these into a single
line in a Notepad window

Sometimes a command may be similar to a previous one that you have entered, and it may be
quicker to use the up arrow in the Windows Command Prompt to retrieve the earlier command, and
then editing it there on the command line

" Important:

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

3 of 32 7/30/20, 6:47 AM

If a command doesn’t work, check the hyphen in front of the parameters. When copying
commands, occasionally the hyphen will appear as a long dash. Make sure to change it to a
short dash (-).

Create Uniform Cluster using Configuration Files (New in MQ
9.1.4)
A Uniform Cluster, UNIDEMO, is to be created, comprising three queue managers: QM1, QM2 and QM3.
QM1 and QM2 are to contain full repositories and QM3 is to contain a partial repository. The following are
to be created for each queue manager in our cluster:

a cluster receiver channel

a cluster queue

a server connection channel

Also, appropriate channel authentication needs to be set up for the server connection channel.

To help you do this, we have created two configuration files for you in C:\Student. The use of such files was
introduced in MQ 9.1.4. This simplifies creation of a uniform cluster and ensures the queue managers in it
are created in a consistent way.

These will be used when we create the queue managers in the cluster:

uniclus.ini, which describes how the uniform cluster will look once it is set up. This will be added
automatically to the qm.ini file for each queue manager during queue manager startup.

uniclus.mqsc, which will be applied automatically to each queue manager at startup. Note that if you
modify this file and restart a queue manager that uses it, then the definitions in the updated file will be
applied to the queue manager as it restarts.

Review Cluster configuration files
1. Log on to the provided system as user ibmdemo, password passw0rd. This user is a member of the

Administrators and mqm groups.

2. Examine the file uniclus.ini in C:\Student. This shows there will be two full repositories stored by
queue managers QM1 and QM2. Connection names for these repositories are also given. The cluster
name, UNIDEMO, is specified and it is to be a Uniform Cluster.

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

4 of 32 7/30/20, 6:47 AM

3. Examine the file uniclus.mqsc in C:\Student, numbered below for clarity:

a. define channel(‘+AUTOCL+_+QMNAME+’) chltype(clusrcvr) trptype(tcp)
conname(‘+CONNAME+’) cluster(‘+AUTOCL+’) shorttmr(5) shortrty(12000) replace

b. define QL(QL) cluster(UNIDEMO) defbind(notfixed) clwluseq(any) maxdepth(99999999) replace

c. define channel(TO_UNIDEMO) chltype(svrconn) trptype(tcp) replace

d. SET CHLAUTH(TO_UNIDEMO) TYPE(ADDRESSMAP) ADDRESS(*) USERSRC(CHANNEL)

e. SET CHLAUTH(TO_UNIDEMO) TYPE(BLOCKUSER) USERLIST(‘nobody’) DESCR(‘Allow
privileged users on this channel’)

f. ALTER AUTHINFO(SYSTEM.DEFAULT.AUTHINFO.IDPWOS) AUTHTYPE(IDPWOS)
CHCKCLNT(OPTIONAL)

g. REFRESH SECURITY

Line a – defines, for each queue manager, a cluster receiver channel, which in our case will be called
UNIDEMO_QMn, where n=1, 2 or 3.

Line b – defines a local queue, which is shared in the cluster:

To allow the messages to be spread across all queue managers in the cluster, the DEFBIND
(Default bind type) parameter is set as shown

Setting the CLWUSEQ (Cluster Workload Use Queue) parameter as shown will allow other
queue managers in the Uniform Cluster to get messages from that queue

Uniform Cluster automatic application rebalancing is not dependent on the queues used by
applications being cluster queues. We’re using cluster queues in this lab to demonstrate how
messages put on to a single queue manager are shared among all the queue managers in the
cluster.

Line c – defines a server connection channel for each queue manager.

Line d – allows connections through the server connection channel.

 AutoCluster:
 Repository2Conname=127.0.0.1(3001)
 Repository2Name=QM1
 Repository1Conname=127.0.0.1(3002)
 Repository1Name=QM2
 ClusterName=UNIDEMO
 Type=Uniform

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

5 of 32 7/30/20, 6:47 AM

Line e – allows only privileged users to connect through this channel.

Line f – the queue manager uses the local operating system to authenticate any provided user ID and
password. If these are provided by an application, they must be a valid pair, but it is not mandatory to
provide them.

Line g – refreshes security settings.

Create queue managers and the Uniform Cluster
We shall now create the queue managers – and our cluster - using these configuration files.

1. Open a Windows Command Prompt session and change directory to C:\Student.

2. Before proceeding, shutdown and delete any queue manager with the name QM1, QM2 or QM3 as
we shall be using these names for queue managers in this lab:

3. Now create the queue manager QM1:

 cd C:\Student

 endmqm -w <queue manager>

 dltmqm <queue manager>

 crtmqm -p 3001 -ii .\uniclus.ini -ic .\uniclus.mqsc -iv CONNAME=127.0.0.1(300
1) QM1

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

6 of 32 7/30/20, 6:47 AM

Note:

this queue manager will listen on port 3001

we are providing automatic configuration of qm.ini attributes and also automatic MQSC
commands to be run at startup, via the uniclus.ini and uniclus.mqsc files respectively

the connection name parameter, comprising the loopback IP address of the host and the
listener port of the queue manager, will be used by the cluster receiver channel definition in the
uniclus.mqsc file

4. Start this queue manager.

5. Similarly create queue manager QM2. This will also contain a full repository.

6. Now create queue manager QM3. As this is not specified in the uniclus.ini file, it will have a partial
repository.

 strmqm QM1

 crtmqm -p 3002 -ii .\uniclus.ini -ic .\uniclus.mqsc -iv CONNAME=127.0.0.1(300
2) QM2

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

7 of 32 7/30/20, 6:47 AM

7. Start these additional queue managers:

You should now have a fully functional Uniform Cluster!

Perform health-check on Uniform Cluster
Before proceeding, we need to check the cluster is up and running.

1. Start MQ Explorer (you can do this from a Windows Command Prompt using the strmqcfg
command). Check that queue managers QM1, QM2, and QM3 are running, and if not, start them.

2. Expand Queue Manager Clusters all the way to confirm that queue managers QM1 and QM2 have

 crtmqm -p 3003 -ii .\uniclus.ini -ic .\uniclus.mqsc -iv CONNAME=127.0.0.1(300
3) QM3

 strmqm QM2

 strmqm QM3

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

8 of 32 7/30/20, 6:47 AM

full repositories, while QM3 has a partial repository.

3. Note that in addition to the Cluster Receiver channels specified in the uniclus.mqsc file, Cluster
Sender channels to the full repository queue manager have been created automatically. In the case of
QM3, which has a partial repository, there are 2 of these channels.

Tip:
Deselect Show System Objects in MQ Explorer to see just the list of the channels you created.

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

9 of 32 7/30/20, 6:47 AM

4. Check that Cluster Sender and Receiver Channels for each queue manager are running and if not,
start them.

Note: The Server Connection Channels will be inactive – do not attempt to start these.

5. Run the default cluster tests, by clicking on Queue Manager Clusters -> UNIDEMO, then right-
clicking to get the menu and clicking on Tests -> Run Default Tests.

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

10 of 32 7/30/20, 6:47 AM

6. When completed, click OK to dismiss the popup box. Check that there are no errors or warnings
resulting, by looking at the Test Results in the lower panel.

Launch getting applications
In this section, we shall launch six instances of an application connected to the same queue manager.

The Client Channel Definition Table (CCDT) determines the channel definitions and authentication
information used by client applications to connect to a queue manager. We shall be using a CCDT in JSON
format. The first few lines are shown below. In the lab, the file path is: C:\Student\CCDT.json.

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

11 of 32 7/30/20, 6:47 AM

Note

the channel names match those of the server connection channels on the queue managers

the port is the listener port for the queue manager

1. Start a new Windows Command Prompt session and run the following commands:

a. set MQCHLLIB=<JSON CCDT dir> (sets the folder containing the JSON CCDT file)

In the lab environment:

b. set MQCHLTAB=<JSON CCDT filename> (sets the name of the JSON CCDT file)

 set MQCHLLIB=C:\Student

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

12 of 32 7/30/20, 6:47 AM

In the lab environment:

c. set MQAPPLNAME=<YOUR_GETTING_APPLICATION_NAME> (sets the application name to a
name of your choice, e.g.)

In the lab environment:

2. Now run the following command to start the sample application to read messages from queue QL on
QM1. Do this 6 times.

 set MQCHLTAB=CCDT.json

 set MQAPPLNAME=MY.GETTER.APP

 start amqsghac QL QM1

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

13 of 32 7/30/20, 6:47 AM

This will open six new sessions, each like this:

Note:

As these sessions are created, they will appear above the session you are working on. Use this
icon for the Windows Command Prompt session in the task bar to help find it again later:

To locate these new amqsghac sessions later, use this icon in the task bar:

3. There is a new MQSC command, DISPLAY APSTATUS, which we shall now use to display the status
of an application across all queue managers in a cluster.

In a new Windows Command Prompt session, run the following as shown below:

DISPLAY APSTATUS(<YOUR_GETTING_APPLICATION_NAME>) TYPE(QMGR)

 runmqsc QM1

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

14 of 32 7/30/20, 6:47 AM

At first, all instances of the application will be running on QM1 and none on the other two queue
managers. However, by the time you run this command, the instances will probably be shared across
all queue managers as shown below.

Note: COUNT is the number of instances of the specified application name currently running on this
queue manager, while MOVCOUNT is the number of instances of the specified application name
running on the queue manager which could be moved to another queue manager if required.

4. Some of the application instances will show reconnection events as the workload is rebalanced to
queue managers QM2 and QM3.

 DISPLAY APSTATUS(MY.GETTER.APP) TYPE(QMGR)

 end

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

15 of 32 7/30/20, 6:47 AM

5. High level application summary information is also available via the MQSC command DISPLAY
APSTATUS with TYPE(APPL), instead of TYPE(QMGR).

Note that COUNT reports the total number of application instances running in the cluster and that the
applications are balanced across the cluster.

Launch putting application
We shall launch another sample application which will put messages to each queue manager in the cluster.
The running samples should then pick up these messages and display them. In this lab, we are using one
putting application to send messages to all getting applications using cluster workload balancing. You
could set up the same scenario with one or more putting applications per queue manager and application
rebalancing would work in the same way that you’ve seen for getting applications.

1. If you still have the Windows Command Prompt session where you issused the six “start amqsghac”
commands, you can use this and skip to step 3.

2. Open a new Windows Command Prompt session and run the following commands:

a. set MQCHLLIB=<JSON CCDT dir> (sets the folder of the JSON CCDT file)

In the lab environment:

 DISPLAY APSTATUS(MY.GETTER.APP) TYPE(APPL)

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

16 of 32 7/30/20, 6:47 AM

b. set MQCHLTAB=<JSON CCDT filename> (sets the name of the JSON CCDT file)

In the lab environment:

c. set MQAPPLNAME=<YOUR_PUTTING_APPLICATION_NAME> (sets the application name to a
different name of your choice)

3. We shall be using the sample amqsputc in this scenario. There are a few extra input parameters that
are required for this sample to run in the way we want:

The target queue the sample will run on (QL)

The queue manager the target queue belongs to (QM1)

A file containing messages that we aim to spread across all the queue managers in our cluster.
(This has been provided for you in the classroom environment: C:\Student\messages.txt)

Enter the following command:

amqsputc QL QM1 < <PATH of messages file>

In the lab environment:

 set MQCHLLIB=C:\Student

 set MQCHLTAB=CCDT.json

 set MQAPPLNAME=MY.PUTTER.APP

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

17 of 32 7/30/20, 6:47 AM

4. Looking at your six amqsghac windows, you should now see the generated messages split across
the getting application sessions that are running. Each window will contain a subset, like this:

Note: The messages may not be evenly distributed across the getting applications instances.

Queue Manager maintenance
In this scenario, imagine a queue manager needs to be stopped for maintenance purposes. We shall
demonstrate how doing this will cause the applications running on that queue manager to run instead on
the remaining active queue managers in the Uniform Cluster. Once the maintenance is complete, the queue
manager will be re-enabled.

1. When a queue manager is ended, the applications on that queue manager are usually lost. However,
if the optional parameter -r is used, the applications will attempt to reconnect to a different queue
manager.

Stop QM3 by running this command from the Windows command line:

 amqsputc QL QM1 < C:\Student\messages.txt

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

18 of 32 7/30/20, 6:47 AM

2. The applications connected to QM3 will reconnect back to QM1. After a while, an application
imbalance will be detected, and affected applications will be reconnected to the other available
queue managers.

To see this happening, re-run the MQSC command DISPLAY APSTATUS on any active queue
manager in the cluster. After a minute or two you should see all application instances now running on
QM1 and QM2:

3. Once you are happy that the applications have balanced out equally across the three other queue
managers, re-start the stopped queue manager using the command:

 endmqm -r QM3

 strmqm QM3

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

19 of 32 7/30/20, 6:47 AM

Note: Because this queue manager is not mentioned in the uniclus.ini file, we see the messages
above.

4. As this queue manager has started and has no applications connected, it will request some from the
other queue managers in the cluster.

Re-run the MQSC command DISPLAY APSTATUS to see the applications being rebalanced once
more.

Metrics (new in 9.1.5)
The amqsrua sample application provides a way to consume MQ monitoring publications and display
performance data published by queue managers. This data can include information about the CPU,
memory, and disk usage. MQ v9.1.5 adds the ability to allow you to monitor usage statistics for each
application you specify by adding the STATAPP class to the amqsrua command. You can use this
information to help you understand how your applications are being moved between queue managers and
to identify any anomalies.

The data is published every 10 seconds and is reported while the command runs.

Statistics available are:

Instance count: number of instances of the specified application name currently running on this
queue manager. See also COUNT from MQSC APSTATUS that we saw earlier.

Movable instance count: number of instances of the specified application name running on this
queue manager which could be moved to another queue manager if required. See also MOVCOUNT
from MQSC APSTATUS that we saw earlier.

Instance shortfall count: how far short of the mean instance count for the uniform cluster that this
queue manager’s instance count is. This will be 0 if queue manager is not part of a uniform cluster.

Instances started: number of new instances of the specified application name that have started on
this queue manager in the last monitoring period (these may have previously moved from other queue
managers or be completely new instances).

Initiated outbound Instance moves: number of movable instances of the specified application that
have been requested to move to another queue manager in the last monitoring period. This will be 0

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

20 of 32 7/30/20, 6:47 AM

if the queue manager is not part of a uniform cluster.

Completed outbound instance moves: number of instances of the specified application that have
ended following a request to move to another queue manager. This number includes those that are
actioning the requested move, or that are ending for any other reason after being requested to move
(note that it does not mean that the instances have successfully started on another queue manager).
This will be 0 if the queue manager is not part of a uniform cluster.

Instances ended during reconnect: number of instances of the specified application that have ended
while in the middle of reconnecting to this queue manager (whether as a result of a move request
from another queue manager, or as part of an HA fail over).

Instances ended: number of instances of the specified application that have ended in the last
monitoring period. This includes instances that have moved, and those that have failed during
reconnection processing.

1. In a new Windows Command Prompt session, run the amqsrua command as follows, i.e. with a
class of STATAPP, a type of INSTANCE, and object of your getting application name.

(Note: You can omit the class, type and object parameters and enter them when prompted instead.)

Initial stats are displayed and then updated every 10 seconds to show activity in the previous interval.
You should see an Instance Count and Movable Instance Count of 2 as shown below. You may see
different numbers for the other stats in the first interval, but these should be 0 in subsequent
intervals.

 amqsrua -m QM1 -c STATAPP -t INSTANCE -o MY.GETTER.APP

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

21 of 32 7/30/20, 6:47 AM

Refer to the description of these stats at the start of this section. Keep this command running.

2. In another Window, stop QM3 once more by running this command from the Windows command
line:

3. Refer back to the window with the running amqsrua session. When the next update is shown, the
following should have changed:

Instance Count & Movable Instance Count

There are now 3 instances of the application running on this queue manager;

Initiated & Completed Outbound Instance Moves, Instances ended

Temporarily equal to 1 during the first interval as an instance is moved from QM3 to this queue
manager.

 endmqm -r QM3

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

22 of 32 7/30/20, 6:47 AM

4. In the other Window, restart QM3.

5. Again, refer back to the amqsrua session. When the next update is shown, the stats will have
changed again. There are now 2 instances running on this queue manager, one having been moved
(back) to QM3. As this happens, the numbers of moved and ended instances are again temporarily
equal to 1.

 strmqm QM3

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

23 of 32 7/30/20, 6:47 AM

6. Stop the amqsrua session when you are ready, using ctrl-c.

Using CCDT Queue Manager Groups
So far, we have connected our getting applications to QM1 directly, and relied on the Uniform Cluster to
rebalance them across the other queue managers over a period of time. There are two disadvantages to
connecting in this way:

When the applications initially connect, they all start out connected to QM1 and there is a delay in the
Uniform Cluster balancing them across the other queue managers

If QM1 is stopped unexpectedly or for maintenance, any applications connected to it will try to
reconnect to QM1 and fail. They will not attempt to connect to the other queue managers in the
cluster. This will also be true if applications connected to other queue managers try to reconnect after
an outage.

In this section, we shall see that by using Queue Manager Groups within our CCDT file, we can decouple
application instances from a particular queue manager and take advantage of the built-in load balancing
capabilities available with CCDTs.

For a fuller description of the issues highlighted here, see step 5 of the following article:

Walkthrough Uniform Cluster !

Stop queue manager - application refers to queue manager directly
1. Stop QM1 by entering the following from the command line.

2. This time, unlike the case where you stopped QM3, the getting application instances connected to
QM1 will continually try to reconnect to the stopped queue manager.

Note: These are the sessions you started earlier by running “start amqsghac” and can be found here:

 endmqm -r QM1

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

24 of 32 7/30/20, 6:47 AM

3. Now run the following MQSC command on any active queue manager in the cluster.

DISPLAY APSTATUS(<YOUR_GETTING_APPLICATION_NAME>) TYPE(APPL)

After a while (yes it will take a little while), there should be fewer than the six application instances
that were originally present.

4. Now restart QM1.

Stop queue manager – application refers to CCDT Queue Manager Group
1. In the lab environment, an updated CCDT file has been created for you to use: C:\Student

\CCDT3.json.

Browse this file. As well as containing the original set of direct references to the queue managers, it
gives a queue manager group definition with a route to all queue managers using the name ANY_QM.

 DISPLAY APSTATUS(MY.GETTER.APP) TYPE(APPL)

 strmqm QM1

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

25 of 32 7/30/20, 6:47 AM

2. In the lab environment, scroll down the file and note two new attributes.

These are defined under connectionManagement:

clientWeight: a priority list for each client. The default value is zero. A client with a higher
clientWeight will be picked over a client with a smaller value.

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

26 of 32 7/30/20, 6:47 AM

affinity: setting the affinity to “none” will build up an ordered list of group connections to
attempt to try in a random order, for any clients on a particular named host.

3. Now let’s put the updated CCDT to the test. First, stop the six running getting application instances
that you started earlier…

Remember, you can find them here:

4. Please note, the supplied updated CCDT file was originally created for a scenario with an additional
queue manager called QM4. For completeness, we shall create that missing queue manager now.

In a new Windows Command Prompt session, create and start queue manager QM4.

 cd C:\Student

 crtmqm -p 3004 -ii .\uniclus.ini -ic .\uniclus.mqsc -iv CONNAME=127.0.0.1(300
4) QM4

 strmqm QM4

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

27 of 32 7/30/20, 6:47 AM

Like QM3, it will have a partial repository.

5. In a new Windows Command Prompt, run the following commands:

a. set MQCHLLIB=<JSON CCDT dir>

(sets the folder containing the new JSON CCDT file)

In the lab environment:

b. set MQCHLTAB=<JSON CCDT filename>

(sets the name of the new JSON CCDT file)

In the lab environment:

c. set MQAPPLNAME=<YOUR_GETTING_APPLICATION_NAME>

(sets the application name to a name of your choice)

6. Now run the application instances, but this time specify the queue manager group ANY_QM, prefixed
with * which tells the client to connect to any queue manager in the ANY_QM group.

 set MQCHLLIB=C:\Student

 set MQCHLTAB=CCDT3.json

 set MQAPPLNAME=MY.GETTER.APP

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

28 of 32 7/30/20, 6:47 AM

Again, you will need to run this command 6 times.

7. The application instances will now attempt to connect to any of the queue managers defined in the
queue manager group, and with the client weight and affinity options defined above, we should see
each application instance connect to one of the queue managers in the Queue Manager Group and
Uniform Cluster.

You can confirm this by running the MQSC command DISPLAY APSTATUS on any active queue
manager in the cluster.

 start amqsghac QL *ANY_QM

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

29 of 32 7/30/20, 6:47 AM

Note: The distribution might be different for you.

8. Now end QM1 to force the applications to be rebalanced.

Rather than the applications getting stuck in a reconnect loop trying to connect to QM1 as we saw
using the previous version of the CCDT file, the applications now tied to the queue manager group
ANY_QM will go through each of the definitions of ANY_QM and when able to successfully connect
to one of the underlying queue managers, will do so. You should see this reported in a subset of the
application instances:

 endmqm -r QM1

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

30 of 32 7/30/20, 6:47 AM

9. Run the MQSC command DISPLAY APSTATUS on any active queue manager in the cluster with
TYPE(APPL). After a while, there should once more be 6 connections in total, as there were before
QM1 was shut down.

10. Now run the MQSC command DISPLAY APSTATUS on any active queue manager in the cluster with
TYPE(QMGR). You will see that with QM1 stopped and with three queue managers running, the load
has balanced again to have a COUNT of 2 on each of the running queue managers.

Congratulations
You have completed this Uniform Clusters and Application Rebalancing lab!

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

31 of 32 7/30/20, 6:47 AM

©2020 IBM. All rights reserved.
Site last generated: Jul 30, 2020

MQ Uniform Clusters | IBM Messaging PoT https://pages.github.ibm.com/cloudintegration/PoT-messaging/mq...

32 of 32 7/30/20, 6:47 AM

